创新的车载电动汽车家庭充电站作为智能家居的推动者:目前和建议的观点

V. Monteiro, T. Sousa, J. Afonso, J. Afonso
{"title":"创新的车载电动汽车家庭充电站作为智能家居的推动者:目前和建议的观点","authors":"V. Monteiro, T. Sousa, J. Afonso, J. Afonso","doi":"10.1109/INDIN.2018.8471968","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"90 3 1","pages":"966-971"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives\",\"authors\":\"V. Monteiro, T. Sousa, J. Afonso, J. Afonso\",\"doi\":\"10.1109/INDIN.2018.8471968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"90 3 1\",\"pages\":\"966-971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8471968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8471968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种创新的车载电动汽车家庭充电站(EV-HCS),作为智能家居(SH)的推动者。本文以研究课题的情境化为背景,全面论述了我国在运营模式方面的研究现状和展望。与现有解决方案相比,该方案的主要动机和优势在于:(a)车载直流充电,速度比传统车载充电快;(b)灵活的运行功率值,旨在优化家庭电源管理;(c)作为家庭或电网的主动调理器运行,无论是否插入电动汽车,这是一种有吸引力的功能,可加强安全电网和智能电网的运行;(d)使用EV的双向操作。用计算机模拟验证了描述这些优点的方法。简要描述了控制算法,证明了其对EV-HCS硬件提出的电力电子拓扑结构的适应性。结果表明,所提出的EV- hcs在提高EV与SHs和智能电网的集成方面具有诱人的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives
This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1