{"title":"创新的车载电动汽车家庭充电站作为智能家居的推动者:目前和建议的观点","authors":"V. Monteiro, T. Sousa, J. Afonso, J. Afonso","doi":"10.1109/INDIN.2018.8471968","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"90 3 1","pages":"966-971"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives\",\"authors\":\"V. Monteiro, T. Sousa, J. Afonso, J. Afonso\",\"doi\":\"10.1109/INDIN.2018.8471968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"90 3 1\",\"pages\":\"966-971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8471968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8471968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives
This paper presents an innovative off-board electric vehicle home charging station (EV-HCS) operating as a smart home (SH) enabler. The present status and the proposed perspectives in terms of operation modes are comprehensively addressed along the paper showing the contextualization of the addressed research topic. Comparing with the existing solution, the main motivations and advantages of the off-board EV-HCS are: (a) Off-board dc EV charger, faster than a classical on-board EV charger; (b) Flexible operating power value, aiming an optimized power management in the home; (c) Operation as an active conditioner for the home or the grid, with or without an EV plugged-in, which represents an attractive functionality for enhancing the operation of SHs and smart grids; (d) Bidirectional operation with an EV. The methods used to describe these advantages are validated using computer simulations. The control algorithm is succinctly described, demonstrating its adaptability to the power electronics topology presented for the EV-HCS hardware. The obtained results demonstrate that the proposed EV-HCS presents attractive functionalities for enhancing the EV integration into SHs and smart grids.