聚阴离子修饰氧化铝纳米颗粒对水环境中土霉素的高效吸附去除

Diu Thi Dinh, Han Bao Nguyen, D. Pham
{"title":"聚阴离子修饰氧化铝纳米颗粒对水环境中土霉素的高效吸附去除","authors":"Diu Thi Dinh, Han Bao Nguyen, D. Pham","doi":"10.51316/jca.2023.030","DOIUrl":null,"url":null,"abstract":"In this study, adsorptive removal of an antibiotic oxytetracycline (OTC) using polyanion poly(2-acrylamide-2-methylpropane sulfonic acid), PAMPs modified α-Al2O3 nanoparticles (PAMNA) was investigated. Surface modification of α-Al2O3 nanoparticles by PAMPs enhanced the removal efficiency of OTC significantly from 35.5 to 90.7 %. The optimum conditions for adsorptive removal of OTC using PAMNA were found to be pH 4, contact time 120 min and adsorbent dosage 20 mg/mL. Under selected conditions, the removal efficiency of OTC using PAMNA was greater than 90 % while the maximum adsorption capacity reached 140.2 mg/g. After three regenerations, the removal efficiencies of OTC were still higher than 75 %. The results of adsorption isotherms of OTC on PAMNA and the surface charge change of PAMNA indicate that both electrostatic and non-electrostatic interactions control OTC adsorption on PAMNA.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly adsorptive removal of oxytetracycline in water environment using polyanion modified alumina nanoparticles\",\"authors\":\"Diu Thi Dinh, Han Bao Nguyen, D. Pham\",\"doi\":\"10.51316/jca.2023.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, adsorptive removal of an antibiotic oxytetracycline (OTC) using polyanion poly(2-acrylamide-2-methylpropane sulfonic acid), PAMPs modified α-Al2O3 nanoparticles (PAMNA) was investigated. Surface modification of α-Al2O3 nanoparticles by PAMPs enhanced the removal efficiency of OTC significantly from 35.5 to 90.7 %. The optimum conditions for adsorptive removal of OTC using PAMNA were found to be pH 4, contact time 120 min and adsorbent dosage 20 mg/mL. Under selected conditions, the removal efficiency of OTC using PAMNA was greater than 90 % while the maximum adsorption capacity reached 140.2 mg/g. After three regenerations, the removal efficiencies of OTC were still higher than 75 %. The results of adsorption isotherms of OTC on PAMNA and the surface charge change of PAMNA indicate that both electrostatic and non-electrostatic interactions control OTC adsorption on PAMNA.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2023.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2023.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了聚阴离子聚(2-丙烯酰胺-2-甲基丙烷磺酸)PAMPs修饰α-Al2O3纳米颗粒(PAMNA)对抗生素土霉素(OTC)的吸附去除效果。PAMPs对α-Al2O3纳米颗粒进行表面改性,使OTC的去除率从35.5%提高到90.7%。PAMNA吸附脱除OTC的最佳条件为pH 4、接触时间120 min、吸附剂用量20 mg/mL。在选定的条件下,PAMNA对OTC的去除率大于90%,最大吸附量达到140.2 mg/g。三次再生后,OTC的去除率仍在75%以上。OTC在PAMNA上的吸附等温线和PAMNA表面电荷的变化表明,静电和非静电相互作用都控制着OTC在PAMNA上的吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly adsorptive removal of oxytetracycline in water environment using polyanion modified alumina nanoparticles
In this study, adsorptive removal of an antibiotic oxytetracycline (OTC) using polyanion poly(2-acrylamide-2-methylpropane sulfonic acid), PAMPs modified α-Al2O3 nanoparticles (PAMNA) was investigated. Surface modification of α-Al2O3 nanoparticles by PAMPs enhanced the removal efficiency of OTC significantly from 35.5 to 90.7 %. The optimum conditions for adsorptive removal of OTC using PAMNA were found to be pH 4, contact time 120 min and adsorbent dosage 20 mg/mL. Under selected conditions, the removal efficiency of OTC using PAMNA was greater than 90 % while the maximum adsorption capacity reached 140.2 mg/g. After three regenerations, the removal efficiencies of OTC were still higher than 75 %. The results of adsorption isotherms of OTC on PAMNA and the surface charge change of PAMNA indicate that both electrostatic and non-electrostatic interactions control OTC adsorption on PAMNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of graphene from polyethylene terephthalate (PET) bottle wastes and its use for the removal of Methylene blue from aqueous solution Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution Fabrication of activated carbon from polyethylene terephthalate plastic waste (PET) and their application for the removal of organic dyes in aqueous solution by chemical method A novel adsorbent based electroplating sludge – rice husk char for removal of methylene blue and ciprofloxacin in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1