采用纳米纳米薄膜的湿度传感器

IF 0.1 Q4 PHYSICS, MULTIDISCIPLINARY Anales AFA Pub Date : 2021-01-01 DOI:10.31527/analesafa.2021.32.3.76
P. Perillo, D. Rodriguez
{"title":"采用纳米纳米薄膜的湿度传感器","authors":"P. Perillo, D. Rodriguez","doi":"10.31527/analesafa.2021.32.3.76","DOIUrl":null,"url":null,"abstract":"In this paper, a humidity sensor based on CuO has been successfully fabricated. Thin-film of CuO nanorices were synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method on silicon wafer with Si3N4thinlayer as a substrate. The microstructure and morphology of the samples were investigated using X-ray diffraction(XRD) and scanning electron microscopy (SEM). Humidity sensing properties of the thin films have been studied. The sensing response has been measured in the relative humidity (RH) range from 20 up to 80 % at room temperature. It was found that impedance of the system decreases as the RH was increased. The prepared sensor revealed good reversibility with response and recovery time of 130 s and 320 s respectively. The complex impedance spectra were analyzed in the range of 0.1 to 1 kHz. This type of humidity sensor can be used as a new generation of ecological sensors with low cost and good stability. It makes the sensor a candidate for practical applications.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"134 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HUMIDITY SENSOR USING CuO NANORICES THIN FILM\",\"authors\":\"P. Perillo, D. Rodriguez\",\"doi\":\"10.31527/analesafa.2021.32.3.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a humidity sensor based on CuO has been successfully fabricated. Thin-film of CuO nanorices were synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method on silicon wafer with Si3N4thinlayer as a substrate. The microstructure and morphology of the samples were investigated using X-ray diffraction(XRD) and scanning electron microscopy (SEM). Humidity sensing properties of the thin films have been studied. The sensing response has been measured in the relative humidity (RH) range from 20 up to 80 % at room temperature. It was found that impedance of the system decreases as the RH was increased. The prepared sensor revealed good reversibility with response and recovery time of 130 s and 320 s respectively. The complex impedance spectra were analyzed in the range of 0.1 to 1 kHz. This type of humidity sensor can be used as a new generation of ecological sensors with low cost and good stability. It makes the sensor a candidate for practical applications.\",\"PeriodicalId\":41478,\"journal\":{\"name\":\"Anales AFA\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anales AFA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31527/analesafa.2021.32.3.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2021.32.3.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文成功地制作了一种基于氧化铜的湿度传感器。以si3n4为衬底,采用连续离子层吸附反应(SILAR)法在硅片上合成了CuO纳米孔薄膜。采用x射线衍射仪(XRD)和扫描电镜(SEM)对样品的微观结构和形貌进行了研究。研究了薄膜的感湿性能。在室温下,在相对湿度(RH)从20%到80%的范围内测量了传感响应。结果表明,系统阻抗随相对湿度的增大而减小。所制备的传感器具有良好的可逆性,响应时间和恢复时间分别为130 s和320 s。在0.1 ~ 1khz范围内分析了复合阻抗谱。该湿度传感器成本低,稳定性好,可作为新一代生态传感器。这使该传感器成为实际应用的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HUMIDITY SENSOR USING CuO NANORICES THIN FILM
In this paper, a humidity sensor based on CuO has been successfully fabricated. Thin-film of CuO nanorices were synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method on silicon wafer with Si3N4thinlayer as a substrate. The microstructure and morphology of the samples were investigated using X-ray diffraction(XRD) and scanning electron microscopy (SEM). Humidity sensing properties of the thin films have been studied. The sensing response has been measured in the relative humidity (RH) range from 20 up to 80 % at room temperature. It was found that impedance of the system decreases as the RH was increased. The prepared sensor revealed good reversibility with response and recovery time of 130 s and 320 s respectively. The complex impedance spectra were analyzed in the range of 0.1 to 1 kHz. This type of humidity sensor can be used as a new generation of ecological sensors with low cost and good stability. It makes the sensor a candidate for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anales AFA
Anales AFA PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.40
自引率
0.00%
发文量
43
期刊最新文献
COPPER NANOPARTICLES FOR IONIZING RADIATION DOSIMETRY FOR THERANOSTICS THE INERTIA OF LIGHT. VERIFICATION OF NEWTON’S SECOND LAW BY A CONFINED FLOW OF RADIATION IN A REFLECTIVE CAVITY EFFECT OF INTENSE MAGNETIC FIELDS ON THE TRAJECTORY OF ELECTRONSPROPAGATING IN LOW DENSITY MEDIA OF INTEREST FOR MRI-LINAC RADIOTHERAPY 22C GROUND STATE DESCRIPTION EVALUATION OF THE HELIOSAT-4 AND MCCLEAR MODELS FOR SOLAR GLOBALIRRADIATION ESTIMATE AT TWO SITES IN ARGENTINA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1