近空间升华法制备Sb2Se3太阳能电池

Runming Tao, Tingting Tan, Hua Zhang, Meng Qingdai, G. Zha
{"title":"近空间升华法制备Sb2Se3太阳能电池","authors":"Runming Tao, Tingting Tan, Hua Zhang, Meng Qingdai, G. Zha","doi":"10.1116/6.0001034","DOIUrl":null,"url":null,"abstract":"Antimony selenide (Sb2Se3) is regarded as an excellent photovoltaic absorber material due to its suitable bandgap, large light absorption coefficient, abundant raw material reserves, and environmental friendliness. However, the commonly used rapid thermal evaporation strategy for deposition of Sb2Se3 films results in low film quality, which is undesirable from the perspective of photovoltaic performance. Herein, we fabricate highly efficient and stable Sb2Se3 solar cells via a close-space sublimation (CSS) process, which allows separate control of the source and substrate temperatures, leading to high-quality thin films and better solar cell performance. Four growth patterns of Sb2Se3 thin films are optimized by controlling the source temperature of CSS. It is found that the Sb2Se3 thin film prepared at 475 °C has the best crystallinity, smoothest surface, and best density. Moreover, solar cells based on ZnO/Sb2Se3 thin films can achieve maximum efficiency with VOC of 0.312 V, JSC of 27.91 mA/cm2, fill fact of 41.35%, and power conversion efficiency of 3.61%. The performance of the devices was not adversely affected by the air environment, and thus, they were shown to exhibit appropriate stability.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"30 1","pages":"052203"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sb2Se3 solar cells fabricated via close-space sublimation\",\"authors\":\"Runming Tao, Tingting Tan, Hua Zhang, Meng Qingdai, G. Zha\",\"doi\":\"10.1116/6.0001034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimony selenide (Sb2Se3) is regarded as an excellent photovoltaic absorber material due to its suitable bandgap, large light absorption coefficient, abundant raw material reserves, and environmental friendliness. However, the commonly used rapid thermal evaporation strategy for deposition of Sb2Se3 films results in low film quality, which is undesirable from the perspective of photovoltaic performance. Herein, we fabricate highly efficient and stable Sb2Se3 solar cells via a close-space sublimation (CSS) process, which allows separate control of the source and substrate temperatures, leading to high-quality thin films and better solar cell performance. Four growth patterns of Sb2Se3 thin films are optimized by controlling the source temperature of CSS. It is found that the Sb2Se3 thin film prepared at 475 °C has the best crystallinity, smoothest surface, and best density. Moreover, solar cells based on ZnO/Sb2Se3 thin films can achieve maximum efficiency with VOC of 0.312 V, JSC of 27.91 mA/cm2, fill fact of 41.35%, and power conversion efficiency of 3.61%. The performance of the devices was not adversely affected by the air environment, and thus, they were shown to exhibit appropriate stability.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":\"30 1\",\"pages\":\"052203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

硒化锑(Sb2Se3)具有带隙合适、光吸收系数大、原料储量丰富、环境友好等优点,被认为是一种优良的光伏吸收材料。然而,通常采用快速热蒸发策略沉积Sb2Se3薄膜,导致薄膜质量较低,从光伏性能的角度来看,这是不可取的。在此,我们通过近空间升华(CSS)工艺制备了高效稳定的Sb2Se3太阳能电池,该工艺允许分离控制源和衬底温度,从而获得高质量的薄膜和更好的太阳能电池性能。通过控制CSS的源温度,优化了Sb2Se3薄膜的四种生长模式。结果表明,在475℃下制备的Sb2Se3薄膜结晶度最佳,表面光滑,密度最佳。ZnO/Sb2Se3薄膜太阳能电池效率最高,VOC为0.312 V, JSC为27.91 mA/cm2,填充率为41.35%,功率转换效率为3.61%。设备的性能没有受到空气环境的不利影响,因此,它们显示出适当的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sb2Se3 solar cells fabricated via close-space sublimation
Antimony selenide (Sb2Se3) is regarded as an excellent photovoltaic absorber material due to its suitable bandgap, large light absorption coefficient, abundant raw material reserves, and environmental friendliness. However, the commonly used rapid thermal evaporation strategy for deposition of Sb2Se3 films results in low film quality, which is undesirable from the perspective of photovoltaic performance. Herein, we fabricate highly efficient and stable Sb2Se3 solar cells via a close-space sublimation (CSS) process, which allows separate control of the source and substrate temperatures, leading to high-quality thin films and better solar cell performance. Four growth patterns of Sb2Se3 thin films are optimized by controlling the source temperature of CSS. It is found that the Sb2Se3 thin film prepared at 475 °C has the best crystallinity, smoothest surface, and best density. Moreover, solar cells based on ZnO/Sb2Se3 thin films can achieve maximum efficiency with VOC of 0.312 V, JSC of 27.91 mA/cm2, fill fact of 41.35%, and power conversion efficiency of 3.61%. The performance of the devices was not adversely affected by the air environment, and thus, they were shown to exhibit appropriate stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1