特征纹理法:基于三维模型的外观压缩

K. Nishino, Yoichi Sato, K. Ikeuchi
{"title":"特征纹理法:基于三维模型的外观压缩","authors":"K. Nishino, Yoichi Sato, K. Ikeuchi","doi":"10.1109/CVPR.1999.787003","DOIUrl":null,"url":null,"abstract":"Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"21 1","pages":"618-624 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Eigen-texture method: Appearance compression based on 3D model\",\"authors\":\"K. Nishino, Yoichi Sato, K. Ikeuchi\",\"doi\":\"10.1109/CVPR.1999.787003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"21 1\",\"pages\":\"618-624 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.787003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.787003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

摘要

基于图像的方法和基于模型的方法是两种具有代表性的绘制方法,用于从物体的真实图像生成物体的虚拟图像。这两种方法已经在CV和CG社区进行了广泛的研究。然而,当将这两种方法应用于混合现实时,我们将这些虚拟图像与真实背景图像集成在一起,这两种方法仍然存在一些缺点。为了克服这些困难,我们提出了一种新的方法,我们称之为特征纹理方法。该方法对真实物体在不同光照和观看条件下的外观进行采样,并将其压缩到三维模型表面上定义的二维坐标系中。3D模型是由一系列距离图像生成的。本征纹理法不需要对物体表面进行任何详细的反射率分析,具有实用性强的特点,并且由于三维几何模型的精确,具有很大的优势。本文描述了该方法,并报告了其实现过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eigen-texture method: Appearance compression based on 3D model
Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1