Thao Le thi, Trang Phan Thi Thuy, Phuong Tran Thi Thu, Lan Nguyen Thi, Thang Nguyen Van, Vien Vo
{"title":"锂离子电池负极材料Ge/C复合材料的合成","authors":"Thao Le thi, Trang Phan Thi Thuy, Phuong Tran Thi Thu, Lan Nguyen Thi, Thang Nguyen Van, Vien Vo","doi":"10.51316/jca.2022.065","DOIUrl":null,"url":null,"abstract":"The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"173 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Ge/C composite as an anode material for lithium ion batteries\",\"authors\":\"Thao Le thi, Trang Phan Thi Thuy, Phuong Tran Thi Thu, Lan Nguyen Thi, Thang Nguyen Van, Vien Vo\",\"doi\":\"10.51316/jca.2022.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2022.065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Ge/C composite as an anode material for lithium ion batteries
The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.