学习、教学和培训中的认知

Vivekanandan S. Kumar, M. Ally, A. Tsinakos, H. Norman
{"title":"学习、教学和培训中的认知","authors":"Vivekanandan S. Kumar, M. Ally, A. Tsinakos, H. Norman","doi":"10.21432/cjlt28261","DOIUrl":null,"url":null,"abstract":"Over the past decade, opportunities for online learning have dramatically increased. Learners around the world now have digital access to a wide array of corporate trainings, certifications, comprehensive academic degree programs, and other educational and training options. Some organizations are blending traditional instruction methods with online technologies. Blended learning generates large volumes of data about both the content (quality and usage) and the learners (study habits and learning outcomes). Correspondingly, the need to properly process voluminous, continuous, and often disparate data has prompted the advent of cognification. Cognification techniques design complex data analytic models that allow natural intelligence to engage artificial smartness in ways that can enhance the learning experience. Cognification is the approach to make something increasingly, ethically, and regulatably smarter. This article highlights how emerging trends in cognification could disrupt online education.","PeriodicalId":37047,"journal":{"name":"Canadian Journal of Learning and Technology","volume":"60 1-2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognification in Learning, Teaching, and Training\",\"authors\":\"Vivekanandan S. Kumar, M. Ally, A. Tsinakos, H. Norman\",\"doi\":\"10.21432/cjlt28261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, opportunities for online learning have dramatically increased. Learners around the world now have digital access to a wide array of corporate trainings, certifications, comprehensive academic degree programs, and other educational and training options. Some organizations are blending traditional instruction methods with online technologies. Blended learning generates large volumes of data about both the content (quality and usage) and the learners (study habits and learning outcomes). Correspondingly, the need to properly process voluminous, continuous, and often disparate data has prompted the advent of cognification. Cognification techniques design complex data analytic models that allow natural intelligence to engage artificial smartness in ways that can enhance the learning experience. Cognification is the approach to make something increasingly, ethically, and regulatably smarter. This article highlights how emerging trends in cognification could disrupt online education.\",\"PeriodicalId\":37047,\"journal\":{\"name\":\"Canadian Journal of Learning and Technology\",\"volume\":\"60 1-2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Learning and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21432/cjlt28261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Learning and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21432/cjlt28261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,在线学习的机会急剧增加。现在,世界各地的学习者都可以通过数字渠道获得各种各样的企业培训、认证、全面的学术学位课程以及其他教育和培训选择。一些组织正在将传统的教学方法与在线技术相结合。混合式学习产生了大量关于内容(质量和使用)和学习者(学习习惯和学习成果)的数据。相应地,正确处理大量的、连续的、通常不同的数据的需要促使了认知的出现。认知技术设计了复杂的数据分析模型,允许自然智能以增强学习体验的方式与人工智能相结合。认知是一种使事物变得越来越聪明、合乎道德、合乎规范的方法。这篇文章强调了认知的新兴趋势是如何颠覆在线教育的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cognification in Learning, Teaching, and Training
Over the past decade, opportunities for online learning have dramatically increased. Learners around the world now have digital access to a wide array of corporate trainings, certifications, comprehensive academic degree programs, and other educational and training options. Some organizations are blending traditional instruction methods with online technologies. Blended learning generates large volumes of data about both the content (quality and usage) and the learners (study habits and learning outcomes). Correspondingly, the need to properly process voluminous, continuous, and often disparate data has prompted the advent of cognification. Cognification techniques design complex data analytic models that allow natural intelligence to engage artificial smartness in ways that can enhance the learning experience. Cognification is the approach to make something increasingly, ethically, and regulatably smarter. This article highlights how emerging trends in cognification could disrupt online education.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
15
期刊最新文献
Perceptions des apprenants de la rétroaction corrective écrite synchrone dans la rédaction collaborative par vidéoconférence Digital Wellness Framework for Online Learning Editorial / Éditorial Volume 49 Issue 3 Self-Talk: Musing on Distance Education. (2023) Exploring Students’ Perception of Quizizz as a Learning Media in Higher Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1