片上扩散键合可在300°C以上的温度下创建稳定的互连

Jessica Richter, A. Steenmann, Benjamin Schellscheidt, T. Licht
{"title":"片上扩散键合可在300°C以上的温度下创建稳定的互连","authors":"Jessica Richter, A. Steenmann, Benjamin Schellscheidt, T. Licht","doi":"10.4071/2380-4505-2019.1.000530","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present a conceptual design of an on-chip solder stack to connect silicon devices faster and more reliable. Almost all electronic devices rely on solder layers to provide electrical, mechanical, and thermal connections between components. We improve the solder connection with industry-standard solder parameters of 300°C and some minutes of soldering time.\n An ideal solder connection is composed of intermetallic phases (IMPs) at the interfaces between device and solder, and substrate and solder. Typically, a thin region of Sn-based solder remains between the two IMP layers at the interfaces. IMPs of copper (Cu) and tin (Sn) are Cu6Sn5 and Cu3Sn. The formation of IMPs is decisive for a good mechanical connection because of their high melting point and mechanical stability. To achieve these requirements, we implement the solder stack as a transient liquid phase bonding (TLPB) system. To realize durable interconnections, we use the diffusion of a high-melting first component in a second component, which is liquid at solder process temperature. Ongoing diffusion leads to the formation of IMPs with a melting point above process temperature, resulting in a solidification of the connection at constant temperature. By this isothermal solidification, the solder connection becomes more durable against mechanical and thermal load and is usable at temperatures exceeding 300°C.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Diffusion Bonding creates Stable Interconnections Usable at Temperatures over 300°C\",\"authors\":\"Jessica Richter, A. Steenmann, Benjamin Schellscheidt, T. Licht\",\"doi\":\"10.4071/2380-4505-2019.1.000530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present a conceptual design of an on-chip solder stack to connect silicon devices faster and more reliable. Almost all electronic devices rely on solder layers to provide electrical, mechanical, and thermal connections between components. We improve the solder connection with industry-standard solder parameters of 300°C and some minutes of soldering time.\\n An ideal solder connection is composed of intermetallic phases (IMPs) at the interfaces between device and solder, and substrate and solder. Typically, a thin region of Sn-based solder remains between the two IMP layers at the interfaces. IMPs of copper (Cu) and tin (Sn) are Cu6Sn5 and Cu3Sn. The formation of IMPs is decisive for a good mechanical connection because of their high melting point and mechanical stability. To achieve these requirements, we implement the solder stack as a transient liquid phase bonding (TLPB) system. To realize durable interconnections, we use the diffusion of a high-melting first component in a second component, which is liquid at solder process temperature. Ongoing diffusion leads to the formation of IMPs with a melting point above process temperature, resulting in a solidification of the connection at constant temperature. By this isothermal solidification, the solder connection becomes more durable against mechanical and thermal load and is usable at temperatures exceeding 300°C.\",\"PeriodicalId\":14363,\"journal\":{\"name\":\"International Symposium on Microelectronics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2019.1.000530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种片上焊料堆的概念设计,以更快、更可靠地连接硅器件。几乎所有的电子设备都依靠焊料层来提供元件之间的电气、机械和热连接。我们通过300°C的工业标准焊料参数和几分钟的焊接时间来改善焊料连接。理想的焊料连接是由器件和焊料之间、衬底和焊料之间的界面上的金属间相(imp)组成的。通常情况下,在接口的两个IMP层之间会保留一层薄薄的锡基焊料。铜(Cu)和锡(Sn)的imp分别是Cu6Sn5和Cu3Sn。由于imp的高熔点和机械稳定性,其形成对良好的机械连接起着决定性的作用。为了达到这些要求,我们将焊料堆实现为瞬态液相键合(TLPB)系统。为了实现持久的互连,我们使用高熔化的第一组件在第二组件中的扩散,第二组件在焊接工艺温度下是液体。持续的扩散导致熔点高于工艺温度的imp的形成,导致连接在恒温下凝固。通过等温凝固,焊料连接在机械和热负荷下变得更加耐用,并且在超过300°C的温度下也可以使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-Chip Diffusion Bonding creates Stable Interconnections Usable at Temperatures over 300°C
In this paper, we present a conceptual design of an on-chip solder stack to connect silicon devices faster and more reliable. Almost all electronic devices rely on solder layers to provide electrical, mechanical, and thermal connections between components. We improve the solder connection with industry-standard solder parameters of 300°C and some minutes of soldering time. An ideal solder connection is composed of intermetallic phases (IMPs) at the interfaces between device and solder, and substrate and solder. Typically, a thin region of Sn-based solder remains between the two IMP layers at the interfaces. IMPs of copper (Cu) and tin (Sn) are Cu6Sn5 and Cu3Sn. The formation of IMPs is decisive for a good mechanical connection because of their high melting point and mechanical stability. To achieve these requirements, we implement the solder stack as a transient liquid phase bonding (TLPB) system. To realize durable interconnections, we use the diffusion of a high-melting first component in a second component, which is liquid at solder process temperature. Ongoing diffusion leads to the formation of IMPs with a melting point above process temperature, resulting in a solidification of the connection at constant temperature. By this isothermal solidification, the solder connection becomes more durable against mechanical and thermal load and is usable at temperatures exceeding 300°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Packaging Technology for Novel 1-dimensional and 2-dimensional VCSEL Arrays The Pivotal Role of Uniformity of Electrolytic Deposition Processes to Improve the Reliability of Advanced Packaging Enhancing the Paste Release on 55μm pads with Water-Soluble Type 7 SAC305 Solder Paste for High Density SIP Application Coronavirus, chip boom, and supply shortage: The new normal for global semiconductor manufacturing Lithography Solutions for Submicron Panel-Level Packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1