通用量子计算的实用俘获离子协议

Pei Jiang Low, Brendan M. White, Andrew Cox, Matthew L. Day, C. Senko
{"title":"通用量子计算的实用俘获离子协议","authors":"Pei Jiang Low, Brendan M. White, Andrew Cox, Matthew L. Day, C. Senko","doi":"10.1103/PHYSREVRESEARCH.2.033128","DOIUrl":null,"url":null,"abstract":"The notion of universal quantum computation can be generalized to multi-level qudits, which offer advantages in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a new generalization of the M\\o{}lmer-S\\o{}rensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a meta-stable state. We numerically simulate known sources of error from previous trapped ion experiments, and show that there are no fundamental limitations to achieving fidelities above \\(99\\%\\) for three-level qudits encoded in \\(^{137}\\mathrm{Ba}^+\\) ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit gate protocols can achieve \\(99\\%\\) fidelities for five-level qudits. We identify avenues to further decrease errors in future work. Our results suggest that three-level trapped ion qudits will be a useful technology for quantum information processing.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Practical trapped-ion protocols for universal qudit-based quantum computing\",\"authors\":\"Pei Jiang Low, Brendan M. White, Andrew Cox, Matthew L. Day, C. Senko\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.033128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of universal quantum computation can be generalized to multi-level qudits, which offer advantages in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a new generalization of the M\\\\o{}lmer-S\\\\o{}rensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a meta-stable state. We numerically simulate known sources of error from previous trapped ion experiments, and show that there are no fundamental limitations to achieving fidelities above \\\\(99\\\\%\\\\) for three-level qudits encoded in \\\\(^{137}\\\\mathrm{Ba}^+\\\\) ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit gate protocols can achieve \\\\(99\\\\%\\\\) fidelities for five-level qudits. We identify avenues to further decrease errors in future work. Our results suggest that three-level trapped ion qudits will be a useful technology for quantum information processing.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.033128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.033128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

通用量子计算的概念可以推广到多级量子,这在资源利用和算法效率方面具有优势。捕获离子是一种原始且控制良好的量子系统,为开发基于量子位的量子信息处理提供了理想的平台。以前的工作并没有充分探索实现捕获离子量子计算已知实验误差源的实用性。在这里,我们描述了一套用于状态准备的通用协议,单量子位门,M \o{} lmer-S \o{} rensen门用于双量子位门的新推广,以及一种利用搁置到亚稳定状态的测量方案。我们数值模拟了先前捕获离子实验中已知的误差来源,并表明在\(^{137}\mathrm{Ba}^+\)离子中编码的三能级qudits在达到\(99\%\)以上的保真度方面没有基本限制。我们的方法可扩展到高维量纲,并且我们的测量和单量纲门协议可以实现\(99\%\)五级量纲的保真度。我们确定了在未来工作中进一步减少错误的途径。我们的研究结果表明,三能级阱离子量子将是一种有用的量子信息处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical trapped-ion protocols for universal qudit-based quantum computing
The notion of universal quantum computation can be generalized to multi-level qudits, which offer advantages in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a new generalization of the M\o{}lmer-S\o{}rensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a meta-stable state. We numerically simulate known sources of error from previous trapped ion experiments, and show that there are no fundamental limitations to achieving fidelities above \(99\%\) for three-level qudits encoded in \(^{137}\mathrm{Ba}^+\) ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit gate protocols can achieve \(99\%\) fidelities for five-level qudits. We identify avenues to further decrease errors in future work. Our results suggest that three-level trapped ion qudits will be a useful technology for quantum information processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1