{"title":"CoBiCo:一个使用多阶段卷积神经网络和基于注意力的Bi-LSTM进行高效情感分类的模型","authors":"R. Ranjan, A. Daniel","doi":"10.3233/kes-230901","DOIUrl":null,"url":null,"abstract":"The rapid growth of social media and specialized websites that provide critical product reviews has resulted in a massive collection of information for customers worldwide. These data could contain a wealth of information, such as product reviews, market forecasting, and the polarity of sentiments. In these challenges, machine learning and deep learning algorithms give the necessary capabilities for sentiment analysis. In today’s competitive markets, it’s critical to grasp reviewer opinions and sentiments by extracting and analyzing their characteristics. The research aims to develop an optimised model for evaluating sentiments and categorising them into proper categories. This research proposes a unique, novel hybridised model that integrates the advantages of deep learning methods Dual LSTM (Long Short Term Memory) and CNN (Convolution Neural Network) with word embedding technique. The performance of different word embedding techniques is compared to select the best embedding for the implementation in the proposed model. Furthermore, a multi-convolution approach with attention-oriented BiLSTM is applied. To test the validity of the performance of the proposed model, standard metrics were applied. The outcome indicates that the suggested model achieves a significantly improved accuracy of 96.56%, superior to other models.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoBiCo: A model using multi-stage ConvNet with attention-based Bi-LSTM for efficient sentiment classification\",\"authors\":\"R. Ranjan, A. Daniel\",\"doi\":\"10.3233/kes-230901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of social media and specialized websites that provide critical product reviews has resulted in a massive collection of information for customers worldwide. These data could contain a wealth of information, such as product reviews, market forecasting, and the polarity of sentiments. In these challenges, machine learning and deep learning algorithms give the necessary capabilities for sentiment analysis. In today’s competitive markets, it’s critical to grasp reviewer opinions and sentiments by extracting and analyzing their characteristics. The research aims to develop an optimised model for evaluating sentiments and categorising them into proper categories. This research proposes a unique, novel hybridised model that integrates the advantages of deep learning methods Dual LSTM (Long Short Term Memory) and CNN (Convolution Neural Network) with word embedding technique. The performance of different word embedding techniques is compared to select the best embedding for the implementation in the proposed model. Furthermore, a multi-convolution approach with attention-oriented BiLSTM is applied. To test the validity of the performance of the proposed model, standard metrics were applied. The outcome indicates that the suggested model achieves a significantly improved accuracy of 96.56%, superior to other models.\",\"PeriodicalId\":44076,\"journal\":{\"name\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/kes-230901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-230901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
CoBiCo: A model using multi-stage ConvNet with attention-based Bi-LSTM for efficient sentiment classification
The rapid growth of social media and specialized websites that provide critical product reviews has resulted in a massive collection of information for customers worldwide. These data could contain a wealth of information, such as product reviews, market forecasting, and the polarity of sentiments. In these challenges, machine learning and deep learning algorithms give the necessary capabilities for sentiment analysis. In today’s competitive markets, it’s critical to grasp reviewer opinions and sentiments by extracting and analyzing their characteristics. The research aims to develop an optimised model for evaluating sentiments and categorising them into proper categories. This research proposes a unique, novel hybridised model that integrates the advantages of deep learning methods Dual LSTM (Long Short Term Memory) and CNN (Convolution Neural Network) with word embedding technique. The performance of different word embedding techniques is compared to select the best embedding for the implementation in the proposed model. Furthermore, a multi-convolution approach with attention-oriented BiLSTM is applied. To test the validity of the performance of the proposed model, standard metrics were applied. The outcome indicates that the suggested model achieves a significantly improved accuracy of 96.56%, superior to other models.