一种用于降压变换器的高精度、宽量程感测fet电感电流传感器

Yongjie Jiang, M. Swilam, Sita Asar, A. Fayed
{"title":"一种用于降压变换器的高精度、宽量程感测fet电感电流传感器","authors":"Yongjie Jiang, M. Swilam, Sita Asar, A. Fayed","doi":"10.1109/ISCAS.2018.8351083","DOIUrl":null,"url":null,"abstract":"This paper introduces an accurate sense-FET-based inductor current sensor for buck converters. The proposed sensor utilizes nonlinear adaptive biasing to maintain consistent bandwidth and phase margin in the sensor's control loop across a wide range of load currents, leading to high sensing accuracy independent of the load. Moreover, auxiliary sensing FETs are proposed to eliminate sharp transitions in the sensed high-side and low-side currents as the buck converter switches between the ON and OFF phases. Eliminating these sharp transitions enables the bandwidths of the current sensor's control loop and the nonlinear adaptive biasing generator to be greatly relaxed without compromising sensing accuracy, leading to lower power consumption. The proposed sensor is implemented as part of a 2-MHz buck converter in a 0.5-μm standard CMOS technology. Simulation results of the proposed sensor show a 10% reduction in current sensing error at light loads (∼50mA) and 40 degrees of improvement in the phase margin of the sensor's control loop at heavy loads (∼5A), compared to conventional sense-FET-based current sensors. Furthermore, the variation in the unity gain frequency (UGF) of the proposed sensor's control loop across the entire load range is 4.5 times lower than that of conventional designs.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An Accurate Sense-FET-based Inductor Current Sensor with Wide Sensing Range for Buck Converters\",\"authors\":\"Yongjie Jiang, M. Swilam, Sita Asar, A. Fayed\",\"doi\":\"10.1109/ISCAS.2018.8351083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an accurate sense-FET-based inductor current sensor for buck converters. The proposed sensor utilizes nonlinear adaptive biasing to maintain consistent bandwidth and phase margin in the sensor's control loop across a wide range of load currents, leading to high sensing accuracy independent of the load. Moreover, auxiliary sensing FETs are proposed to eliminate sharp transitions in the sensed high-side and low-side currents as the buck converter switches between the ON and OFF phases. Eliminating these sharp transitions enables the bandwidths of the current sensor's control loop and the nonlinear adaptive biasing generator to be greatly relaxed without compromising sensing accuracy, leading to lower power consumption. The proposed sensor is implemented as part of a 2-MHz buck converter in a 0.5-μm standard CMOS technology. Simulation results of the proposed sensor show a 10% reduction in current sensing error at light loads (∼50mA) and 40 degrees of improvement in the phase margin of the sensor's control loop at heavy loads (∼5A), compared to conventional sense-FET-based current sensors. Furthermore, the variation in the unity gain frequency (UGF) of the proposed sensor's control loop across the entire load range is 4.5 times lower than that of conventional designs.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"10 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了一种用于降压变换器的高精度感应场效应晶体管电流传感器。该传感器利用非线性自适应偏置,在大范围的负载电流范围内保持传感器控制回路的一致带宽和相位裕度,从而实现与负载无关的高传感精度。此外,还提出了辅助感测场效应管,以消除当降压变换器在ON和OFF相之间切换时感测到的高侧和低侧电流的急剧转变。消除这些急剧过渡使电流传感器的控制回路和非线性自适应偏置发生器的带宽大大放松,而不会影响传感精度,从而降低功耗。该传感器采用0.5 μm标准CMOS技术,作为2 mhz降压转换器的一部分实现。该传感器的仿真结果表明,与传统的基于感测场效应效应的电流传感器相比,在轻负载(~ 50mA)下电流传感误差降低10%,在重负载(~ 5A)下传感器控制回路的相位裕度提高40度。此外,在整个负载范围内,所提出的传感器控制回路的单位增益频率(UGF)的变化比传统设计低4.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Accurate Sense-FET-based Inductor Current Sensor with Wide Sensing Range for Buck Converters
This paper introduces an accurate sense-FET-based inductor current sensor for buck converters. The proposed sensor utilizes nonlinear adaptive biasing to maintain consistent bandwidth and phase margin in the sensor's control loop across a wide range of load currents, leading to high sensing accuracy independent of the load. Moreover, auxiliary sensing FETs are proposed to eliminate sharp transitions in the sensed high-side and low-side currents as the buck converter switches between the ON and OFF phases. Eliminating these sharp transitions enables the bandwidths of the current sensor's control loop and the nonlinear adaptive biasing generator to be greatly relaxed without compromising sensing accuracy, leading to lower power consumption. The proposed sensor is implemented as part of a 2-MHz buck converter in a 0.5-μm standard CMOS technology. Simulation results of the proposed sensor show a 10% reduction in current sensing error at light loads (∼50mA) and 40 degrees of improvement in the phase margin of the sensor's control loop at heavy loads (∼5A), compared to conventional sense-FET-based current sensors. Furthermore, the variation in the unity gain frequency (UGF) of the proposed sensor's control loop across the entire load range is 4.5 times lower than that of conventional designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1