利用辅助数据压缩提高puf的综合征编码效率

Matthias Hiller, G. Sigl
{"title":"利用辅助数据压缩提高puf的综合征编码效率","authors":"Matthias Hiller, G. Sigl","doi":"10.7873/DATE.2014.084","DOIUrl":null,"url":null,"abstract":"Physical Unclonable Functions (PUFs) provide secure cryptographic keys for resource constrained embedded systems without secure storage. A PUF measures internal manufacturing variations to create a unique, but noisy secret inside a device. Syndrome coding schemes create and store helper data about the structure of a specific PUF to correct errors within subsequent PUF measurements and generate a reliable key. This helper data can contain redundancy. We analyze existing schemes and show that data compression can be applied to decrease the size of the helper data of existing implementations. We introduce compressed Differential Sequence Coding (DSC), which is the most efficient syndrome coding scheme known to date for a popular reference scenario. Adding helper data compression to the DSC algorithm leads to an overall decrease of 68% in helper data size compared to other algorithms in a reference scenario. This is achieved without increasing the number of PUF bits and a minimal increase in logic size.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Increasing the efficiency of syndrome coding for PUFs with helper data compression\",\"authors\":\"Matthias Hiller, G. Sigl\",\"doi\":\"10.7873/DATE.2014.084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical Unclonable Functions (PUFs) provide secure cryptographic keys for resource constrained embedded systems without secure storage. A PUF measures internal manufacturing variations to create a unique, but noisy secret inside a device. Syndrome coding schemes create and store helper data about the structure of a specific PUF to correct errors within subsequent PUF measurements and generate a reliable key. This helper data can contain redundancy. We analyze existing schemes and show that data compression can be applied to decrease the size of the helper data of existing implementations. We introduce compressed Differential Sequence Coding (DSC), which is the most efficient syndrome coding scheme known to date for a popular reference scenario. Adding helper data compression to the DSC algorithm leads to an overall decrease of 68% in helper data size compared to other algorithms in a reference scenario. This is achieved without increasing the number of PUF bits and a minimal increase in logic size.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"26 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

物理不可克隆函数(puf)为没有安全存储的资源受限嵌入式系统提供了安全的加密密钥。PUF测量内部制造变化,在设备内部创造一个独特但嘈杂的秘密。综合征编码方案创建并存储关于特定PUF结构的辅助数据,以纠正后续PUF测量中的错误并生成可靠的密钥。这个助手数据可以包含冗余。我们分析了现有的方案,并表明数据压缩可以用于减少现有实现的辅助数据的大小。我们介绍了压缩差分序列编码(DSC),这是迄今为止已知的最有效的综合征编码方案,用于流行的参考场景。将辅助数据压缩添加到DSC算法中,与参考场景中的其他算法相比,辅助数据大小总体上减少了68%。这是在不增加PUF位的数量和逻辑大小的最小增加的情况下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing the efficiency of syndrome coding for PUFs with helper data compression
Physical Unclonable Functions (PUFs) provide secure cryptographic keys for resource constrained embedded systems without secure storage. A PUF measures internal manufacturing variations to create a unique, but noisy secret inside a device. Syndrome coding schemes create and store helper data about the structure of a specific PUF to correct errors within subsequent PUF measurements and generate a reliable key. This helper data can contain redundancy. We analyze existing schemes and show that data compression can be applied to decrease the size of the helper data of existing implementations. We introduce compressed Differential Sequence Coding (DSC), which is the most efficient syndrome coding scheme known to date for a popular reference scenario. Adding helper data compression to the DSC algorithm leads to an overall decrease of 68% in helper data size compared to other algorithms in a reference scenario. This is achieved without increasing the number of PUF bits and a minimal increase in logic size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple interpolants for linear arithmetic Modeling steep slope devices: From circuits to architectures Software-based Pauli tracking in fault-tolerant quantum circuits Using guided local search for adaptive resource reservation in large-scale embedded systems Emulation-based robustness assessment for automotive smart-power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1