大型安全约束AC-OPF关键事件快速识别分解算法

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2023-04-27 DOI:10.1287/opre.2023.2453
Frank E. Curtis, D. Molzahn, Shenyinying Tu, A. Wächter, Ermin Wei, Elizabeth Wong
{"title":"大型安全约束AC-OPF关键事件快速识别分解算法","authors":"Frank E. Curtis, D. Molzahn, Shenyinying Tu, A. Wächter, Ermin Wei, Elizabeth Wong","doi":"10.1287/opre.2023.2453","DOIUrl":null,"url":null,"abstract":"The article “A Decomposition Algorithm with Fast Identification of Critical Contingencies for Large-Scale Security-Constrained AC-OPF” presents the decomposition algorithm used by Team GO-SNIP for the ARPA-E Grid Optimization (GO) Competition Challenge 1, held from November 2018 through October 2019. The algorithm involves unique contingency ranking and evaluation strategies for determining the important contingencies to include in a master problem that approximates the original large-scale security-constrained problem. It also involves efficient strategies for handling the complementarity constraints that appear in the model and for handling the arising degeneracies. Software implementation details are described, and the results of an extensive set of numerical experiments are provided to illustrate the effectiveness of each of the used techniques. Team GO-SNIP received a second-place finish in Challenge 1 of the Go Competition.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"29 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Decomposition Algorithm with Fast Identification of Critical Contingencies for Large-Scale Security-Constrained AC-OPF\",\"authors\":\"Frank E. Curtis, D. Molzahn, Shenyinying Tu, A. Wächter, Ermin Wei, Elizabeth Wong\",\"doi\":\"10.1287/opre.2023.2453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article “A Decomposition Algorithm with Fast Identification of Critical Contingencies for Large-Scale Security-Constrained AC-OPF” presents the decomposition algorithm used by Team GO-SNIP for the ARPA-E Grid Optimization (GO) Competition Challenge 1, held from November 2018 through October 2019. The algorithm involves unique contingency ranking and evaluation strategies for determining the important contingencies to include in a master problem that approximates the original large-scale security-constrained problem. It also involves efficient strategies for handling the complementarity constraints that appear in the model and for handling the arising degeneracies. Software implementation details are described, and the results of an extensive set of numerical experiments are provided to illustrate the effectiveness of each of the used techniques. Team GO-SNIP received a second-place finish in Challenge 1 of the Go Competition.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2023.2453\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.2453","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

文章“一种快速识别大规模安全约束AC-OPF关键事件的分解算法”介绍了GO- snip团队在2018年11月至2019年10月举行的ARPA-E网格优化(GO)竞赛挑战1中使用的分解算法。该算法采用独特的权变排序和评估策略,以确定主问题中包含的重要权变,从而近似于原始的大规模安全约束问题。它还涉及处理模型中出现的互补性约束和处理产生的退化的有效策略。描述了软件实现的细节,并提供了一组广泛的数值实验结果,以说明每种使用技术的有效性。Go - snip团队在第一轮围棋比赛中获得第二名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Decomposition Algorithm with Fast Identification of Critical Contingencies for Large-Scale Security-Constrained AC-OPF
The article “A Decomposition Algorithm with Fast Identification of Critical Contingencies for Large-Scale Security-Constrained AC-OPF” presents the decomposition algorithm used by Team GO-SNIP for the ARPA-E Grid Optimization (GO) Competition Challenge 1, held from November 2018 through October 2019. The algorithm involves unique contingency ranking and evaluation strategies for determining the important contingencies to include in a master problem that approximates the original large-scale security-constrained problem. It also involves efficient strategies for handling the complementarity constraints that appear in the model and for handling the arising degeneracies. Software implementation details are described, and the results of an extensive set of numerical experiments are provided to illustrate the effectiveness of each of the used techniques. Team GO-SNIP received a second-place finish in Challenge 1 of the Go Competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1