基于代理的现实安全约束最优潮流异步分解技术

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2023-07-14 DOI:10.1287/opre.2022.0229
C. Petra, I. Aravena
{"title":"基于代理的现实安全约束最优潮流异步分解技术","authors":"C. Petra, I. Aravena","doi":"10.1287/opre.2022.0229","DOIUrl":null,"url":null,"abstract":"Solving realistic security-constrained optimal power flow problems In “A surrogate-based asynchronous decomposition technique for realistic security-constrained optimal power flow problems,” we propose a new algorithm for solving a classical problem in power grid operations: the security-constrained optimal power flow, considering its nonlinearities and realistic transitions between nominal and emergency post-contingency operations. Solving security-constrained optimal power flow problems accurately is a critical function, upon which depends the reliability, security, and efficiency of power systems as well as the correct functioning of other critical infrastructure dependent on electricity. The proposed algorithm was extensively tested against many state-of-the-art approaches using realistic and real instances in the ARPA-E Grid Optimization Competition Challenge 1, where it found the best-known solution for 58% of the instances, attained an average gap of less than 0.2%, and obtained the best overall scores, thereby winning all divisions of Challenge 1 with a very strong first place.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Surrogate-Based Asynchronous Decomposition Technique for Realistic Security-Constrained Optimal Power Flow Problems\",\"authors\":\"C. Petra, I. Aravena\",\"doi\":\"10.1287/opre.2022.0229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving realistic security-constrained optimal power flow problems In “A surrogate-based asynchronous decomposition technique for realistic security-constrained optimal power flow problems,” we propose a new algorithm for solving a classical problem in power grid operations: the security-constrained optimal power flow, considering its nonlinearities and realistic transitions between nominal and emergency post-contingency operations. Solving security-constrained optimal power flow problems accurately is a critical function, upon which depends the reliability, security, and efficiency of power systems as well as the correct functioning of other critical infrastructure dependent on electricity. The proposed algorithm was extensively tested against many state-of-the-art approaches using realistic and real instances in the ARPA-E Grid Optimization Competition Challenge 1, where it found the best-known solution for 58% of the instances, attained an average gap of less than 0.2%, and obtained the best overall scores, thereby winning all divisions of Challenge 1 with a very strong first place.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.0229\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.0229","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在“现实安全约束最优潮流问题的基于代理的异步分解技术”中,我们提出了一种新的算法来解决电网运行中的经典问题:安全约束最优潮流,考虑其非线性和标称和应急后应急运行之间的现实过渡。准确求解安全约束下的最优潮流问题是一项至关重要的功能,它取决于电力系统的可靠性、安全性和效率,以及其他依赖电力的关键基础设施的正确运行。提出的算法在ARPA-E网格优化竞赛挑战1中使用现实和真实的实例对许多最先进的方法进行了广泛的测试,其中它在58%的实例中找到了最知名的解决方案,平均差距小于0.2%,并获得了最好的总分,从而以非常强的第一名赢得了挑战1的所有分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Surrogate-Based Asynchronous Decomposition Technique for Realistic Security-Constrained Optimal Power Flow Problems
Solving realistic security-constrained optimal power flow problems In “A surrogate-based asynchronous decomposition technique for realistic security-constrained optimal power flow problems,” we propose a new algorithm for solving a classical problem in power grid operations: the security-constrained optimal power flow, considering its nonlinearities and realistic transitions between nominal and emergency post-contingency operations. Solving security-constrained optimal power flow problems accurately is a critical function, upon which depends the reliability, security, and efficiency of power systems as well as the correct functioning of other critical infrastructure dependent on electricity. The proposed algorithm was extensively tested against many state-of-the-art approaches using realistic and real instances in the ARPA-E Grid Optimization Competition Challenge 1, where it found the best-known solution for 58% of the instances, attained an average gap of less than 0.2%, and obtained the best overall scores, thereby winning all divisions of Challenge 1 with a very strong first place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1