结合对比学习和基于课程的硬负例抽样的两阶段电子商务搜索匹配模型

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00055
Wenkai Zhang
{"title":"结合对比学习和基于课程的硬负例抽样的两阶段电子商务搜索匹配模型","authors":"Wenkai Zhang","doi":"10.1109/ICNLP58431.2023.00055","DOIUrl":null,"url":null,"abstract":"Text matching is a fundamental task in natural language processing. To address the short and ambiguous search statements in e-commerce domain, the complexity of headlines and the expensive manual annotation samples, this paper proposes a two-stage \"vectorized retrieval + refined ranking\" text matching model with a mixture of contrastive learning and course-based hard negative example sampling. By using supervised learning data augmentation, domain pre-training, comparative learning and hard case sampling to assist in ranking, this work achieves an MRR@10 value of 0.3890 in the test set of the 2022 \"Ali Lingjie\" E-Commerce Search Algorithm Competition, ranking second, demonstrating the effectiveness of the model.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"211 1 1","pages":"263-267"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-stage e-commerce search matching model incorporating contrastive learning and course-based hard negative example sampling\",\"authors\":\"Wenkai Zhang\",\"doi\":\"10.1109/ICNLP58431.2023.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text matching is a fundamental task in natural language processing. To address the short and ambiguous search statements in e-commerce domain, the complexity of headlines and the expensive manual annotation samples, this paper proposes a two-stage \\\"vectorized retrieval + refined ranking\\\" text matching model with a mixture of contrastive learning and course-based hard negative example sampling. By using supervised learning data augmentation, domain pre-training, comparative learning and hard case sampling to assist in ranking, this work achieves an MRR@10 value of 0.3890 in the test set of the 2022 \\\"Ali Lingjie\\\" E-Commerce Search Algorithm Competition, ranking second, demonstrating the effectiveness of the model.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"211 1 1\",\"pages\":\"263-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

文本匹配是自然语言处理中的一项基本任务。针对电子商务领域搜索语句短而模糊、标题复杂和人工标注样本昂贵等问题,提出了一种结合对比学习和基于课程的硬负例抽样的两阶段“向量化检索+精细化排序”文本匹配模型。通过使用监督学习数据增强、领域预训练、比较学习和硬案例抽样辅助排序,本工作在2022年“阿里灵界”电子商务搜索算法大赛的测试集中获得MRR@10值0.3890,排名第二,证明了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-stage e-commerce search matching model incorporating contrastive learning and course-based hard negative example sampling
Text matching is a fundamental task in natural language processing. To address the short and ambiguous search statements in e-commerce domain, the complexity of headlines and the expensive manual annotation samples, this paper proposes a two-stage "vectorized retrieval + refined ranking" text matching model with a mixture of contrastive learning and course-based hard negative example sampling. By using supervised learning data augmentation, domain pre-training, comparative learning and hard case sampling to assist in ranking, this work achieves an MRR@10 value of 0.3890 in the test set of the 2022 "Ali Lingjie" E-Commerce Search Algorithm Competition, ranking second, demonstrating the effectiveness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1