通过排列测试弥合深度学习和假设驱动分析之间的差距

Magdalini Paschali, Qingyu Zhao, E. Adeli, K. Pohl
{"title":"通过排列测试弥合深度学习和假设驱动分析之间的差距","authors":"Magdalini Paschali, Qingyu Zhao, E. Adeli, K. Pohl","doi":"10.48550/arXiv.2207.14349","DOIUrl":null,"url":null,"abstract":"A fundamental approach in neuroscience research is to test hypotheses based on neuropsychological and behavioral measures, i.e., whether certain factors (e.g., related to life events) are associated with an outcome (e.g., depression). In recent years, deep learning has become a potential alternative approach for conducting such analyses by predicting an outcome from a collection of factors and identifying the most \"informative\" ones driving the prediction. However, this approach has had limited impact as its findings are not linked to statistical significance of factors supporting hypotheses. In this article, we proposed a flexible and scalable approach based on the concept of permutation testing that integrates hypothesis testing into the data-driven deep learning analysis. We apply our approach to the yearly self-reported assessments of 621 adolescent participants of the National Consortium of Alcohol and Neurodevelopment in Adolescence (NCANDA) to predict negative valence, a symptom of major depressive disorder according to the NIMH Research Domain Criteria (RDoC). Our method successfully identifies categories of risk factors that further explain the symptom.","PeriodicalId":92572,"journal":{"name":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","volume":"3 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing\",\"authors\":\"Magdalini Paschali, Qingyu Zhao, E. Adeli, K. Pohl\",\"doi\":\"10.48550/arXiv.2207.14349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental approach in neuroscience research is to test hypotheses based on neuropsychological and behavioral measures, i.e., whether certain factors (e.g., related to life events) are associated with an outcome (e.g., depression). In recent years, deep learning has become a potential alternative approach for conducting such analyses by predicting an outcome from a collection of factors and identifying the most \\\"informative\\\" ones driving the prediction. However, this approach has had limited impact as its findings are not linked to statistical significance of factors supporting hypotheses. In this article, we proposed a flexible and scalable approach based on the concept of permutation testing that integrates hypothesis testing into the data-driven deep learning analysis. We apply our approach to the yearly self-reported assessments of 621 adolescent participants of the National Consortium of Alcohol and Neurodevelopment in Adolescence (NCANDA) to predict negative valence, a symptom of major depressive disorder according to the NIMH Research Domain Criteria (RDoC). Our method successfully identifies categories of risk factors that further explain the symptom.\",\"PeriodicalId\":92572,\"journal\":{\"name\":\"PRedictive Intelligence in MEdicine. PRIME (Workshop)\",\"volume\":\"3 1\",\"pages\":\"13-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRedictive Intelligence in MEdicine. PRIME (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.14349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRedictive Intelligence in MEdicine. PRIME (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.14349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经科学研究的一个基本方法是测试基于神经心理学和行为测量的假设,即某些因素(例如,与生活事件相关)是否与结果(例如,抑郁)相关。近年来,深度学习已经成为一种潜在的替代方法,通过从一系列因素中预测结果,并确定推动预测的最具“信息量”的因素,来进行此类分析。然而,这种方法的影响有限,因为它的发现与支持假设的因素的统计显著性无关。在本文中,我们提出了一种基于置换测试概念的灵活且可扩展的方法,将假设测试集成到数据驱动的深度学习分析中。根据NIMH研究领域标准(RDoC),我们将我们的方法应用于621名青少年参与者的年度自我报告评估,以预测负效价,这是重度抑郁症的一种症状。我们的方法成功地识别了进一步解释症状的风险因素类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing
A fundamental approach in neuroscience research is to test hypotheses based on neuropsychological and behavioral measures, i.e., whether certain factors (e.g., related to life events) are associated with an outcome (e.g., depression). In recent years, deep learning has become a potential alternative approach for conducting such analyses by predicting an outcome from a collection of factors and identifying the most "informative" ones driving the prediction. However, this approach has had limited impact as its findings are not linked to statistical significance of factors supporting hypotheses. In this article, we proposed a flexible and scalable approach based on the concept of permutation testing that integrates hypothesis testing into the data-driven deep learning analysis. We apply our approach to the yearly self-reported assessments of 621 adolescent participants of the National Consortium of Alcohol and Neurodevelopment in Adolescence (NCANDA) to predict negative valence, a symptom of major depressive disorder according to the NIMH Research Domain Criteria (RDoC). Our method successfully identifies categories of risk factors that further explain the symptom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging. SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification. Imputing Brain Measurements Across Data Sets via Graph Neural Networks. Multiple Instance Neuroimage Transformer. Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1