{"title":"用纳米二氧化硅和纳米高岭石聚合物纳米复合材料改善陶瓷制品空隙填充材料的性能","authors":"H. Mohamed, Wael Sabry Mohamed","doi":"10.1108/prt-03-2023-0024","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.\n\n\nDesign/methodology/approach\nFive different pastes were used in the laboratory studies. The pastes consist mainly of pottery powder (grog), dental plaster, microballoons and an adhesive of Primal AC33, nano-silica and nano kaolinite in various concentrations. The prepared samples were subjected to accelerated heat and light aging. Besides, some investigations were used to evaluate the efficacy of the additive nanomaterials, such as TEM, digital and scanning electron microscopy microscopes. Contact angle, color change, shrinkage degree, physical properties and compressive strength tests were also conducted.\n\n\nFindings\nThe results indicated that using Nano-silica considerably improves the mechanical strength and decreases the shrinkage of gap-filling materials. According to the results, a mixture of grog, microballoons and Primal AC33/Nano-silica Nanocomposites is the optimal gap-filling paste for archaeological pottery. Moreover, this paste showed a higher contact angle (120°), lower color change (ΔE = 2.62), lower shrinkage (3.3%), lower water absorption (3.36%), lower porosity (5.05%) and higher compressive strength (5124 N/mm2).\n\n\nOriginality/value\nThis paper attains to develop an economic polymer-nanocomposite that can be used with gap-filling materials for pottery artifacts.\n","PeriodicalId":20147,"journal":{"name":"Pigment & Resin Technology","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the properties of gap-filling materials for pottery artifacts with nano silica and nano kaolinite polymeric nanocomposites\",\"authors\":\"H. Mohamed, Wael Sabry Mohamed\",\"doi\":\"10.1108/prt-03-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.\\n\\n\\nDesign/methodology/approach\\nFive different pastes were used in the laboratory studies. The pastes consist mainly of pottery powder (grog), dental plaster, microballoons and an adhesive of Primal AC33, nano-silica and nano kaolinite in various concentrations. The prepared samples were subjected to accelerated heat and light aging. Besides, some investigations were used to evaluate the efficacy of the additive nanomaterials, such as TEM, digital and scanning electron microscopy microscopes. Contact angle, color change, shrinkage degree, physical properties and compressive strength tests were also conducted.\\n\\n\\nFindings\\nThe results indicated that using Nano-silica considerably improves the mechanical strength and decreases the shrinkage of gap-filling materials. According to the results, a mixture of grog, microballoons and Primal AC33/Nano-silica Nanocomposites is the optimal gap-filling paste for archaeological pottery. Moreover, this paste showed a higher contact angle (120°), lower color change (ΔE = 2.62), lower shrinkage (3.3%), lower water absorption (3.36%), lower porosity (5.05%) and higher compressive strength (5124 N/mm2).\\n\\n\\nOriginality/value\\nThis paper attains to develop an economic polymer-nanocomposite that can be used with gap-filling materials for pottery artifacts.\\n\",\"PeriodicalId\":20147,\"journal\":{\"name\":\"Pigment & Resin Technology\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment & Resin Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/prt-03-2023-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment & Resin Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/prt-03-2023-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the properties of gap-filling materials for pottery artifacts with nano silica and nano kaolinite polymeric nanocomposites
Purpose
The study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.
Design/methodology/approach
Five different pastes were used in the laboratory studies. The pastes consist mainly of pottery powder (grog), dental plaster, microballoons and an adhesive of Primal AC33, nano-silica and nano kaolinite in various concentrations. The prepared samples were subjected to accelerated heat and light aging. Besides, some investigations were used to evaluate the efficacy of the additive nanomaterials, such as TEM, digital and scanning electron microscopy microscopes. Contact angle, color change, shrinkage degree, physical properties and compressive strength tests were also conducted.
Findings
The results indicated that using Nano-silica considerably improves the mechanical strength and decreases the shrinkage of gap-filling materials. According to the results, a mixture of grog, microballoons and Primal AC33/Nano-silica Nanocomposites is the optimal gap-filling paste for archaeological pottery. Moreover, this paste showed a higher contact angle (120°), lower color change (ΔE = 2.62), lower shrinkage (3.3%), lower water absorption (3.36%), lower porosity (5.05%) and higher compressive strength (5124 N/mm2).
Originality/value
This paper attains to develop an economic polymer-nanocomposite that can be used with gap-filling materials for pottery artifacts.