{"title":"有效的资源分配契约减少不良事件","authors":"Yong Liang, Peng Sun, Runyu Tang, Chong Zhang","doi":"10.1287/opre.2022.2322","DOIUrl":null,"url":null,"abstract":"On online platforms, goods, services, and content providers, also known as agents, introduce adverse events. The frequency of these events depends on each agent’s effort level. In “Efficient Resource Allocation Contracts to Reduce Adverse Events,” Liang, Sun, Tang, and Zhang study continuous-time dynamic contracts that utilize resource allocation and monetary transfers to induce agents to exert effort and reduce the arrival rate of adverse events. They devise an iterative algorithm that characterizes and calculates such contracts and specify the profit-maximizing contract for the platform, also known as the principal. In contrast to the single-agent case, in which efficiency is not achievable, they show that efficient and incentive-compatible contracts, which allocate all resources and induce agents to exert constant effort, generally exist with two or more agents. Additionally, they also provide efficient and incentive-compatible dynamic contracts that can be expressed in closed form and are therefore easy to understand and implement in practice.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Resource Allocation Contracts to Reduce Adverse Events\",\"authors\":\"Yong Liang, Peng Sun, Runyu Tang, Chong Zhang\",\"doi\":\"10.1287/opre.2022.2322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On online platforms, goods, services, and content providers, also known as agents, introduce adverse events. The frequency of these events depends on each agent’s effort level. In “Efficient Resource Allocation Contracts to Reduce Adverse Events,” Liang, Sun, Tang, and Zhang study continuous-time dynamic contracts that utilize resource allocation and monetary transfers to induce agents to exert effort and reduce the arrival rate of adverse events. They devise an iterative algorithm that characterizes and calculates such contracts and specify the profit-maximizing contract for the platform, also known as the principal. In contrast to the single-agent case, in which efficiency is not achievable, they show that efficient and incentive-compatible contracts, which allocate all resources and induce agents to exert constant effort, generally exist with two or more agents. Additionally, they also provide efficient and incentive-compatible dynamic contracts that can be expressed in closed form and are therefore easy to understand and implement in practice.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2322\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2322","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Efficient Resource Allocation Contracts to Reduce Adverse Events
On online platforms, goods, services, and content providers, also known as agents, introduce adverse events. The frequency of these events depends on each agent’s effort level. In “Efficient Resource Allocation Contracts to Reduce Adverse Events,” Liang, Sun, Tang, and Zhang study continuous-time dynamic contracts that utilize resource allocation and monetary transfers to induce agents to exert effort and reduce the arrival rate of adverse events. They devise an iterative algorithm that characterizes and calculates such contracts and specify the profit-maximizing contract for the platform, also known as the principal. In contrast to the single-agent case, in which efficiency is not achievable, they show that efficient and incentive-compatible contracts, which allocate all resources and induce agents to exert constant effort, generally exist with two or more agents. Additionally, they also provide efficient and incentive-compatible dynamic contracts that can be expressed in closed form and are therefore easy to understand and implement in practice.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.