左心室肥厚严重程度分级的多模态成像:方法学回顾

Maaike Alkema, E. Spitzer, O. Soliman, C. Loewe
{"title":"左心室肥厚严重程度分级的多模态成像:方法学回顾","authors":"Maaike Alkema, E. Spitzer, O. Soliman, C. Loewe","doi":"10.4250/jcu.2016.24.4.257","DOIUrl":null,"url":null,"abstract":"Left ventricular hypertrophy (LVH), defined by an increase in left ventricular mass (LVM), is a common cardiac finding generally caused by an increase in pressure or volume load. Assessing severity of LVH is of great clinical value in terms of prognosis and treatment choices, as LVH severity grades correlate with the risk for presenting cardiovascular events. The three main cardiac parameters for the assessment of LVH are wall thickness, LVM, and LV geometry. Echocardiography, with large availability and low cost, is the technique of choice for their assessment. Consequently, reference values for LVH severity in clinical guidelines are based on this technique. However, cardiac magnetic resonance (CMR) and computed tomography (CT) are increasingly used in clinical practice, providing excellent image quality. Nevertheless, there is no extensive data to support reference values based on these techniques, while comparative studies between the three techniques show different results in wall thickness and LVM measurements. In this paper, we provide an overview of the different methodologies used to assess LVH severity with echocardiography, CMR and CT. We argue that establishing reference values per imaging modality, and possibly indexed to body surface area and classified per gender, ethnicity and age-group, might be essential for the correct classification of LVH severity.","PeriodicalId":88913,"journal":{"name":"Journal of cardiovascular ultrasound","volume":"46 1","pages":"257 - 267"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multimodality Imaging for Left Ventricular Hypertrophy Severity Grading: A Methodological Review\",\"authors\":\"Maaike Alkema, E. Spitzer, O. Soliman, C. Loewe\",\"doi\":\"10.4250/jcu.2016.24.4.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Left ventricular hypertrophy (LVH), defined by an increase in left ventricular mass (LVM), is a common cardiac finding generally caused by an increase in pressure or volume load. Assessing severity of LVH is of great clinical value in terms of prognosis and treatment choices, as LVH severity grades correlate with the risk for presenting cardiovascular events. The three main cardiac parameters for the assessment of LVH are wall thickness, LVM, and LV geometry. Echocardiography, with large availability and low cost, is the technique of choice for their assessment. Consequently, reference values for LVH severity in clinical guidelines are based on this technique. However, cardiac magnetic resonance (CMR) and computed tomography (CT) are increasingly used in clinical practice, providing excellent image quality. Nevertheless, there is no extensive data to support reference values based on these techniques, while comparative studies between the three techniques show different results in wall thickness and LVM measurements. In this paper, we provide an overview of the different methodologies used to assess LVH severity with echocardiography, CMR and CT. We argue that establishing reference values per imaging modality, and possibly indexed to body surface area and classified per gender, ethnicity and age-group, might be essential for the correct classification of LVH severity.\",\"PeriodicalId\":88913,\"journal\":{\"name\":\"Journal of cardiovascular ultrasound\",\"volume\":\"46 1\",\"pages\":\"257 - 267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cardiovascular ultrasound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4250/jcu.2016.24.4.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiovascular ultrasound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4250/jcu.2016.24.4.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

左心室肥厚(LVH)是由左心室质量(LVM)增加所定义的,是一种常见的心脏发现,通常由压力或容量负荷增加引起。由于LVH严重程度等级与出现心血管事件的风险相关,因此评估LVH严重程度在预后和治疗选择方面具有重要的临床价值。评估LVH的三个主要心脏参数是壁厚、LVM和LV几何形状。超声心动图,具有广泛的可用性和低成本,是他们的评估技术的选择。因此,临床指南中LVH严重程度的参考值是基于该技术的。然而,心脏磁共振(CMR)和计算机断层扫描(CT)越来越多地应用于临床实践,提供了良好的图像质量。然而,没有广泛的数据来支持基于这些技术的参考值,而三种技术之间的比较研究显示,在壁厚和LVM测量结果不同。在本文中,我们概述了超声心动图、CMR和CT评估LVH严重程度的不同方法。我们认为,建立每一种成像方式的参考值,可能与体表面积相关,并根据性别、种族和年龄组进行分类,可能对LVH严重程度的正确分类至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodality Imaging for Left Ventricular Hypertrophy Severity Grading: A Methodological Review
Left ventricular hypertrophy (LVH), defined by an increase in left ventricular mass (LVM), is a common cardiac finding generally caused by an increase in pressure or volume load. Assessing severity of LVH is of great clinical value in terms of prognosis and treatment choices, as LVH severity grades correlate with the risk for presenting cardiovascular events. The three main cardiac parameters for the assessment of LVH are wall thickness, LVM, and LV geometry. Echocardiography, with large availability and low cost, is the technique of choice for their assessment. Consequently, reference values for LVH severity in clinical guidelines are based on this technique. However, cardiac magnetic resonance (CMR) and computed tomography (CT) are increasingly used in clinical practice, providing excellent image quality. Nevertheless, there is no extensive data to support reference values based on these techniques, while comparative studies between the three techniques show different results in wall thickness and LVM measurements. In this paper, we provide an overview of the different methodologies used to assess LVH severity with echocardiography, CMR and CT. We argue that establishing reference values per imaging modality, and possibly indexed to body surface area and classified per gender, ethnicity and age-group, might be essential for the correct classification of LVH severity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long Term Outcomes of Left Atrial Reservoir Function in Children with a History of Kawasaki Disease. Diagnosis, Treatment, and Prevention of Cardiovascular Toxicity Related to Anti-Cancer Treatment in Clinical Practice: An Opinion Paper from the Working Group on Cardio-Oncology of the Korean Society of Echocardiography. Impact of a Geometric Correction for Proximal Flow Constraint on the Assessment of Mitral Regurgitation Severity Using the Proximal Flow Convergence Method. Recurrent Acute Myocardial Infarction Caused by Intra-cardiac Metastatic Undifferentiated Pleomorphic Sarcoma during Cancer Treatment. A Rare Case of Left Ventricular Noncompaction in LEOPARD Syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1