从我的朋友(和他们的朋友)的一点帮助:影响社区的社会推荐

Avni Gulati, M. Eirinaki
{"title":"从我的朋友(和他们的朋友)的一点帮助:影响社区的社会推荐","authors":"Avni Gulati, M. Eirinaki","doi":"10.1145/3308558.3313745","DOIUrl":null,"url":null,"abstract":"Social recommendations have been a very intriguing domain for researchers in the past decade. The main premise is that the social network of a user can be leveraged to enhance the rating-based recommendation process. This has been achieved in various ways, and under different assumptions about the network characteristics, structure, and availability of other information (such as trust, content, etc.) In this work, we create neighborhoods of influence leveraging only the social graph structure. These are in turn introduced in the recommendation process both as a pre-processing step and as a social regularization factor of the matrix factorization algorithm. Our experimental evaluation using real-life datasets demonstrates the effectiveness of the proposed technique.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"With a Little Help from My Friends (and Their Friends): Influence Neighborhoods for Social Recommendations\",\"authors\":\"Avni Gulati, M. Eirinaki\",\"doi\":\"10.1145/3308558.3313745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social recommendations have been a very intriguing domain for researchers in the past decade. The main premise is that the social network of a user can be leveraged to enhance the rating-based recommendation process. This has been achieved in various ways, and under different assumptions about the network characteristics, structure, and availability of other information (such as trust, content, etc.) In this work, we create neighborhoods of influence leveraging only the social graph structure. These are in turn introduced in the recommendation process both as a pre-processing step and as a social regularization factor of the matrix factorization algorithm. Our experimental evaluation using real-life datasets demonstrates the effectiveness of the proposed technique.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的十年里,社会推荐一直是研究人员非常感兴趣的领域。其主要前提是,可以利用用户的社交网络来增强基于评级的推荐过程。这是通过各种方式实现的,并且是在关于网络特征、结构和其他信息(如信任、内容等)的可用性的不同假设下实现的。在这项工作中,我们仅利用社交图结构创建了影响力社区。这些依次作为预处理步骤和矩阵分解算法的社会正则化因子引入到推荐过程中。我们使用真实数据集的实验评估证明了所提出技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
With a Little Help from My Friends (and Their Friends): Influence Neighborhoods for Social Recommendations
Social recommendations have been a very intriguing domain for researchers in the past decade. The main premise is that the social network of a user can be leveraged to enhance the rating-based recommendation process. This has been achieved in various ways, and under different assumptions about the network characteristics, structure, and availability of other information (such as trust, content, etc.) In this work, we create neighborhoods of influence leveraging only the social graph structure. These are in turn introduced in the recommendation process both as a pre-processing step and as a social regularization factor of the matrix factorization algorithm. Our experimental evaluation using real-life datasets demonstrates the effectiveness of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1