M. N. Sari, Z. Muchtar, Jasmidi Jasmidi, Siti Rahmah, A. Pulungan, M. Zubir, R. Selly, P. Faradilla
{"title":"活性炭/海藻酸盐-铜复合材料的合成与表征","authors":"M. N. Sari, Z. Muchtar, Jasmidi Jasmidi, Siti Rahmah, A. Pulungan, M. Zubir, R. Selly, P. Faradilla","doi":"10.24114/ijcst.v6i2.49372","DOIUrl":null,"url":null,"abstract":"OPEFB is one source of natural fiber-based composites which have the potential to become activated carbon. This study aims to synthesize and characterize the activated carbon/alginate -Cu composite. The characterization used in this study is FTIR. The results of this study The synthesis of activated carbon/alginate -Cu composites began with a process of carbonization and activation with H3PO4 to produce Activated Carbon. Alginate using commercial alginate. Furthermore, the three ingredients were mixed until homogeneous and put into a 0.1M CuSO4 solution to produce beads. The characterization of FTIR characterization on the activated carbon/alginate-Cu composite contained the functional group OH group, triple C bond from stretching alkyne, C=C aromatic group, C-H alkane group, C-O group , the P=O stretching vibration of the P-O-C group and the alcohol OH group expressing the active carbon; there are functional groups of hydroxyl (OH), carboxyl, carbonyl, and C-O-C and –COOH bonds which represent alginate and there are OH functional groups, stretching C-H bonds, C-O stretching, stretching C-C. The KALg Cu13 sample had a peak at a wavelength of 2838.79 Cm-1 Where the four samples show the presence of C≡N groups.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Activated Carbon/Alginate-Cu Composites\",\"authors\":\"M. N. Sari, Z. Muchtar, Jasmidi Jasmidi, Siti Rahmah, A. Pulungan, M. Zubir, R. Selly, P. Faradilla\",\"doi\":\"10.24114/ijcst.v6i2.49372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OPEFB is one source of natural fiber-based composites which have the potential to become activated carbon. This study aims to synthesize and characterize the activated carbon/alginate -Cu composite. The characterization used in this study is FTIR. The results of this study The synthesis of activated carbon/alginate -Cu composites began with a process of carbonization and activation with H3PO4 to produce Activated Carbon. Alginate using commercial alginate. Furthermore, the three ingredients were mixed until homogeneous and put into a 0.1M CuSO4 solution to produce beads. The characterization of FTIR characterization on the activated carbon/alginate-Cu composite contained the functional group OH group, triple C bond from stretching alkyne, C=C aromatic group, C-H alkane group, C-O group , the P=O stretching vibration of the P-O-C group and the alcohol OH group expressing the active carbon; there are functional groups of hydroxyl (OH), carboxyl, carbonyl, and C-O-C and –COOH bonds which represent alginate and there are OH functional groups, stretching C-H bonds, C-O stretching, stretching C-C. The KALg Cu13 sample had a peak at a wavelength of 2838.79 Cm-1 Where the four samples show the presence of C≡N groups.\",\"PeriodicalId\":13519,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/ijcst.v6i2.49372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v6i2.49372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Activated Carbon/Alginate-Cu Composites
OPEFB is one source of natural fiber-based composites which have the potential to become activated carbon. This study aims to synthesize and characterize the activated carbon/alginate -Cu composite. The characterization used in this study is FTIR. The results of this study The synthesis of activated carbon/alginate -Cu composites began with a process of carbonization and activation with H3PO4 to produce Activated Carbon. Alginate using commercial alginate. Furthermore, the three ingredients were mixed until homogeneous and put into a 0.1M CuSO4 solution to produce beads. The characterization of FTIR characterization on the activated carbon/alginate-Cu composite contained the functional group OH group, triple C bond from stretching alkyne, C=C aromatic group, C-H alkane group, C-O group , the P=O stretching vibration of the P-O-C group and the alcohol OH group expressing the active carbon; there are functional groups of hydroxyl (OH), carboxyl, carbonyl, and C-O-C and –COOH bonds which represent alginate and there are OH functional groups, stretching C-H bonds, C-O stretching, stretching C-C. The KALg Cu13 sample had a peak at a wavelength of 2838.79 Cm-1 Where the four samples show the presence of C≡N groups.