利用压电结效应在超低功率谐振微器件中的应用

A. Rasouli, M. Syrzycki, B. Bahreyni
{"title":"利用压电结效应在超低功率谐振微器件中的应用","authors":"A. Rasouli, M. Syrzycki, B. Bahreyni","doi":"10.1109/TRANSDUCERS.2015.7181352","DOIUrl":null,"url":null,"abstract":"We are reporting on application of the piezojunction effect as a viable mechanism for detection of resonance frequency in silicon microdevices. In this technique, the sensing pn-junction is reverse-biased, therefore, due to low sensing current, the required power for detection of resonance is rather small. A bulk extensional resonator with an embedded pn-junction has been designed, fabricated, and characterized to serve as a proof-of-concept structure. The experiments have shown that a power consumption as low as 37nW was needed for detection of extensional-mode of the resonator at a resonant frequency of 9MHz.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Employing piezojunction effect for ultra-low power resonant microdevice applications\",\"authors\":\"A. Rasouli, M. Syrzycki, B. Bahreyni\",\"doi\":\"10.1109/TRANSDUCERS.2015.7181352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are reporting on application of the piezojunction effect as a viable mechanism for detection of resonance frequency in silicon microdevices. In this technique, the sensing pn-junction is reverse-biased, therefore, due to low sensing current, the required power for detection of resonance is rather small. A bulk extensional resonator with an embedded pn-junction has been designed, fabricated, and characterized to serve as a proof-of-concept structure. The experiments have shown that a power consumption as low as 37nW was needed for detection of extensional-mode of the resonator at a resonant frequency of 9MHz.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7181352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们报告了压电结效应的应用,作为一种可行的机制,以检测谐振频率在硅微器件。在这种技术中,传感pn结是反向偏置的,因此,由于低传感电流,谐振检测所需的功率相当小。设计、制造和表征了具有嵌入式pn结的大块拉伸谐振器,以作为概念验证结构。实验表明,在9MHz谐振频率下,检测谐振器的扩展模式所需的功耗低至37nW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Employing piezojunction effect for ultra-low power resonant microdevice applications
We are reporting on application of the piezojunction effect as a viable mechanism for detection of resonance frequency in silicon microdevices. In this technique, the sensing pn-junction is reverse-biased, therefore, due to low sensing current, the required power for detection of resonance is rather small. A bulk extensional resonator with an embedded pn-junction has been designed, fabricated, and characterized to serve as a proof-of-concept structure. The experiments have shown that a power consumption as low as 37nW was needed for detection of extensional-mode of the resonator at a resonant frequency of 9MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CMOS-based poly-silicon sub-micron wire biosensor for multiple biomarker detections in clinical samples An alternative technique to Perfectly Matched Layers to model anchor losses in MEMS resonators with undercut suspensions Rapid 3D-print-and-shrink fabrication of biodegradable microneedles with complex geometries A novel MOS radiation dosimeter based on the MEMS-made oxide layer 7th order sharp-roll-off bridged micromechanical filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1