G. Sombrio, Emerson Oliveira, J. Strassner, Christoph Doering, H. Fouckhardt
{"title":"干涉原位III/V半导体干蚀刻深度控制±0.8 nm的最佳精度使用四倍游标尺度测量","authors":"G. Sombrio, Emerson Oliveira, J. Strassner, Christoph Doering, H. Fouckhardt","doi":"10.1116/6.0001209","DOIUrl":null,"url":null,"abstract":"Semiconductor multilayer and device fabrication is a complex task in electronics and opto-electronics. Layer dry etching is one of the process steps to achieve a specific lateral device design. In situ and real-time monitoring of etch depth will be necessary if high precision in etch depth is required. Nondestructive optical techniques are the methods of choice. Reflectance anisotropy spectroscopy equipment has been used to monitor the accurate etch depth during reactive ion etching of III/V semiconductor samples in situ and real time. For this purpose, temporal Fabry–Perot oscillations due to the etch-related shrinking thickness of the uppermost layer have been exploited. Earlier, we have already reported an etch-depth resolution of ±16.0 nm. By the use of a quadruple-Vernier-scale measurement and an evaluation protocol, now we even improve the in situ real-time etch-depth resolution by a factor of 20, i.e., nominally down to ±0.8 nm.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"99 1","pages":"052204"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interferometric in-situ III/V semiconductor dry-etch depth-control with ±0.8 nm best accuracy using a quadruple-Vernier-scale measurement\",\"authors\":\"G. Sombrio, Emerson Oliveira, J. Strassner, Christoph Doering, H. Fouckhardt\",\"doi\":\"10.1116/6.0001209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor multilayer and device fabrication is a complex task in electronics and opto-electronics. Layer dry etching is one of the process steps to achieve a specific lateral device design. In situ and real-time monitoring of etch depth will be necessary if high precision in etch depth is required. Nondestructive optical techniques are the methods of choice. Reflectance anisotropy spectroscopy equipment has been used to monitor the accurate etch depth during reactive ion etching of III/V semiconductor samples in situ and real time. For this purpose, temporal Fabry–Perot oscillations due to the etch-related shrinking thickness of the uppermost layer have been exploited. Earlier, we have already reported an etch-depth resolution of ±16.0 nm. By the use of a quadruple-Vernier-scale measurement and an evaluation protocol, now we even improve the in situ real-time etch-depth resolution by a factor of 20, i.e., nominally down to ±0.8 nm.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":\"99 1\",\"pages\":\"052204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interferometric in-situ III/V semiconductor dry-etch depth-control with ±0.8 nm best accuracy using a quadruple-Vernier-scale measurement
Semiconductor multilayer and device fabrication is a complex task in electronics and opto-electronics. Layer dry etching is one of the process steps to achieve a specific lateral device design. In situ and real-time monitoring of etch depth will be necessary if high precision in etch depth is required. Nondestructive optical techniques are the methods of choice. Reflectance anisotropy spectroscopy equipment has been used to monitor the accurate etch depth during reactive ion etching of III/V semiconductor samples in situ and real time. For this purpose, temporal Fabry–Perot oscillations due to the etch-related shrinking thickness of the uppermost layer have been exploited. Earlier, we have already reported an etch-depth resolution of ±16.0 nm. By the use of a quadruple-Vernier-scale measurement and an evaluation protocol, now we even improve the in situ real-time etch-depth resolution by a factor of 20, i.e., nominally down to ±0.8 nm.