开发天然气制合成气的目标方法

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2023-02-06 DOI:10.3311/ppch.21115
B. Patel, Bahizire Martin Mukeru
{"title":"开发天然气制合成气的目标方法","authors":"B. Patel, Bahizire Martin Mukeru","doi":"10.3311/ppch.21115","DOIUrl":null,"url":null,"abstract":"The conversion of natural and unconventional gas into syngas is a crucial intermediate step in the production of various important chemicals and liquid fuels. The syngas generation step usually requires the largest capital investment of the process and may also be very energy intensive. Therefore, determining the most efficient method of converting feedstock into syngas of the correct H2:CO ratio is of significant importance. The aim of this work was to set design and performance targets for different H2:CO ratios (depending on the downstream requirements) in terms of the carbon efficiency (including CO2 utilization or emissions), water usage, and energy requirements. It was shown that the overall process for natural gas tri-reforming is limited by the enthalpy change (ΔH = 0) and this process was able to produce work. It was further shown that high syngas ratios not only require significant amounts of natural gas and oxygen but also emit CO2.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Targeting Approach for Syngas Generation from Natural Gas\",\"authors\":\"B. Patel, Bahizire Martin Mukeru\",\"doi\":\"10.3311/ppch.21115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conversion of natural and unconventional gas into syngas is a crucial intermediate step in the production of various important chemicals and liquid fuels. The syngas generation step usually requires the largest capital investment of the process and may also be very energy intensive. Therefore, determining the most efficient method of converting feedstock into syngas of the correct H2:CO ratio is of significant importance. The aim of this work was to set design and performance targets for different H2:CO ratios (depending on the downstream requirements) in terms of the carbon efficiency (including CO2 utilization or emissions), water usage, and energy requirements. It was shown that the overall process for natural gas tri-reforming is limited by the enthalpy change (ΔH = 0) and this process was able to produce work. It was further shown that high syngas ratios not only require significant amounts of natural gas and oxygen but also emit CO2.\",\"PeriodicalId\":19922,\"journal\":{\"name\":\"Periodica Polytechnica Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.21115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

将天然气和非常规天然气转化为合成气是生产各种重要化学品和液体燃料的关键中间步骤。合成气生产步骤通常需要最大的资本投资的过程,也可能是非常能源密集型。因此,确定将原料转化为H2:CO比例正确的合成气的最有效方法是非常重要的。这项工作的目的是在碳效率(包括二氧化碳利用或排放)、用水量和能源需求方面,为不同的H2:CO比例(取决于下游要求)设定设计和性能目标。结果表明,天然气三重整的整个过程受到焓变(ΔH = 0)的限制,该过程能够产生功。研究进一步表明,高合成气比例不仅需要大量的天然气和氧气,而且还会排放二氧化碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a Targeting Approach for Syngas Generation from Natural Gas
The conversion of natural and unconventional gas into syngas is a crucial intermediate step in the production of various important chemicals and liquid fuels. The syngas generation step usually requires the largest capital investment of the process and may also be very energy intensive. Therefore, determining the most efficient method of converting feedstock into syngas of the correct H2:CO ratio is of significant importance. The aim of this work was to set design and performance targets for different H2:CO ratios (depending on the downstream requirements) in terms of the carbon efficiency (including CO2 utilization or emissions), water usage, and energy requirements. It was shown that the overall process for natural gas tri-reforming is limited by the enthalpy change (ΔH = 0) and this process was able to produce work. It was further shown that high syngas ratios not only require significant amounts of natural gas and oxygen but also emit CO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
The Nanostructure Based SnS Chalcogenide Semiconductor: A Detailed Investigation of Physical and Electrical Properties Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities Effect of Nanophotocatalyst WO3 Addition on PVDF Membrane Characteristics and Performance Mathematical-model Analysis of the Potential Exposure to Lead, Zinc and Iron Emissions from Consumption of Premium Motor Spirit in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1