预测covid - 19病例爆发的机器学习技术综述

A. Santra, A. Dutta
{"title":"预测covid - 19病例爆发的机器学习技术综述","authors":"A. Santra, A. Dutta","doi":"10.5815/ijisa.2022.03.04","DOIUrl":null,"url":null,"abstract":"At present, the whole world is experiencing a huge disturbance in social, economic, and political levels which may mostly attributed to sudden outbreak of Covid-19. The World Health Organization (WHO) declared it as Public Health crisis and global pandemic. Researchers across the globe have already proposed different outbreak models to impose various control measures fight against the novel corona virus. In order to overcome various challenges for the prediction of Covid-19 outbreaks, different mathematical and statistical approaches have been recommended by the researchers. The approaches used machine learning and deep learning based techniques which are capable of prediction of hidden patterns from large and complex datasets. The purpose of the present paper is to study different machine learning and deep learning based techniques used to identify and predict the pattern and performs some comparative analysis on the techniques. This paper contains a detailed summary of 40 paper based on this issue along with the use of method they applied to obtain the purpose. After the review it has been found that no model is fully capable of predicting it with accuracy. So, a hybrid model with better training should be employed for better result. This paper also studies different performance measures that researchers have used to show the efficiency of their proposed model.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive Review of Machine Learning Techniques for Predicting the Outbreak of Covid19 Cases\",\"authors\":\"A. Santra, A. Dutta\",\"doi\":\"10.5815/ijisa.2022.03.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the whole world is experiencing a huge disturbance in social, economic, and political levels which may mostly attributed to sudden outbreak of Covid-19. The World Health Organization (WHO) declared it as Public Health crisis and global pandemic. Researchers across the globe have already proposed different outbreak models to impose various control measures fight against the novel corona virus. In order to overcome various challenges for the prediction of Covid-19 outbreaks, different mathematical and statistical approaches have been recommended by the researchers. The approaches used machine learning and deep learning based techniques which are capable of prediction of hidden patterns from large and complex datasets. The purpose of the present paper is to study different machine learning and deep learning based techniques used to identify and predict the pattern and performs some comparative analysis on the techniques. This paper contains a detailed summary of 40 paper based on this issue along with the use of method they applied to obtain the purpose. After the review it has been found that no model is fully capable of predicting it with accuracy. So, a hybrid model with better training should be employed for better result. This paper also studies different performance measures that researchers have used to show the efficiency of their proposed model.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2022.03.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2022.03.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

当前,全球社会、经济、政治等各个层面都在经历巨大动荡,新冠肺炎疫情的突然爆发可能是主要原因。世界卫生组织(WHO)宣布其为公共卫生危机和全球流行病。全球的研究人员已经提出了不同的爆发模型,以实施各种控制措施来对抗新型冠状病毒。为了克服预测新冠肺炎疫情的各种挑战,研究人员推荐了不同的数学和统计方法。该方法使用了基于机器学习和深度学习的技术,能够从大型复杂数据集中预测隐藏模式。本文的目的是研究用于识别和预测模式的不同机器学习和基于深度学习的技术,并对这些技术进行一些比较分析。本文包含了基于这个问题的40篇论文的详细总结,以及他们采用的方法来获得目的。经过审查,发现没有任何模型能够完全准确地预测它。因此,为了获得更好的结果,需要采用训练更好的混合模型。本文还研究了研究人员用来显示其提出的模型的效率的不同性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Review of Machine Learning Techniques for Predicting the Outbreak of Covid19 Cases
At present, the whole world is experiencing a huge disturbance in social, economic, and political levels which may mostly attributed to sudden outbreak of Covid-19. The World Health Organization (WHO) declared it as Public Health crisis and global pandemic. Researchers across the globe have already proposed different outbreak models to impose various control measures fight against the novel corona virus. In order to overcome various challenges for the prediction of Covid-19 outbreaks, different mathematical and statistical approaches have been recommended by the researchers. The approaches used machine learning and deep learning based techniques which are capable of prediction of hidden patterns from large and complex datasets. The purpose of the present paper is to study different machine learning and deep learning based techniques used to identify and predict the pattern and performs some comparative analysis on the techniques. This paper contains a detailed summary of 40 paper based on this issue along with the use of method they applied to obtain the purpose. After the review it has been found that no model is fully capable of predicting it with accuracy. So, a hybrid model with better training should be employed for better result. This paper also studies different performance measures that researchers have used to show the efficiency of their proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1