Per Block, James Hollway, Christoph Stadtfeld, J. Koskinen, T. Snijders
{"title":"循环规范与未来信息的“预测”:Leifeld & Cranmer经验SAOM-TERGM比较中的误差","authors":"Per Block, James Hollway, Christoph Stadtfeld, J. Koskinen, T. Snijders","doi":"10.1017/nws.2022.6","DOIUrl":null,"url":null,"abstract":"Abstract We review the empirical comparison of Stochastic Actor-oriented Models (SAOMs) and Temporal Exponential Random Graph Models (TERGMs) by Leifeld & Cranmer in this journal [Network Science 7(1):20–51, 2019]. When specifying their TERGM, they use exogenous nodal attributes calculated from the outcome networks’ observed degrees instead of endogenous ERGM equivalents of structural effects as used in the SAOM. This turns the modeled endogeneity into circularity and obtained results are tautological. In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information and thereby predict the future using observations from the future. Thus, their analysis rests on erroneous model specifications that invalidate the article’s conclusions. Finally, beyond these specific points, we argue that their evaluation metric—tie-level predictive accuracy—is unsuited for the task of comparing model performance.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer\",\"authors\":\"Per Block, James Hollway, Christoph Stadtfeld, J. Koskinen, T. Snijders\",\"doi\":\"10.1017/nws.2022.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We review the empirical comparison of Stochastic Actor-oriented Models (SAOMs) and Temporal Exponential Random Graph Models (TERGMs) by Leifeld & Cranmer in this journal [Network Science 7(1):20–51, 2019]. When specifying their TERGM, they use exogenous nodal attributes calculated from the outcome networks’ observed degrees instead of endogenous ERGM equivalents of structural effects as used in the SAOM. This turns the modeled endogeneity into circularity and obtained results are tautological. In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information and thereby predict the future using observations from the future. Thus, their analysis rests on erroneous model specifications that invalidate the article’s conclusions. Finally, beyond these specific points, we argue that their evaluation metric—tie-level predictive accuracy—is unsuited for the task of comparing model performance.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2022.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer
Abstract We review the empirical comparison of Stochastic Actor-oriented Models (SAOMs) and Temporal Exponential Random Graph Models (TERGMs) by Leifeld & Cranmer in this journal [Network Science 7(1):20–51, 2019]. When specifying their TERGM, they use exogenous nodal attributes calculated from the outcome networks’ observed degrees instead of endogenous ERGM equivalents of structural effects as used in the SAOM. This turns the modeled endogeneity into circularity and obtained results are tautological. In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information and thereby predict the future using observations from the future. Thus, their analysis rests on erroneous model specifications that invalidate the article’s conclusions. Finally, beyond these specific points, we argue that their evaluation metric—tie-level predictive accuracy—is unsuited for the task of comparing model performance.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.