独立运动:历史的重要性

Robert Pless, T. Brodský, Y. Aloimonos
{"title":"独立运动:历史的重要性","authors":"Robert Pless, T. Brodský, Y. Aloimonos","doi":"10.1109/CVPR.1999.784614","DOIUrl":null,"url":null,"abstract":"We consider a problem central in aerial visual surveillance applications-detection and tracking of small, independently moving objects in long and noisy video sequences. We directly use spatiotemporal image intensity gradient measurements to compute an exact model of background motion. This allows the creation of accurate mosaics over many frames and the definition of a constraint violation function which acts as an indication of independent motion. A novel temporal integration method maintains confidence measures over long subsequences without computing the optic flow, requiring object models, or using a Kalman filler. The mosaic acts as a stable feature frame, allowing precise localization of the independently moving objects. We present a statistical analysis of the effects of image noise on the constraint violation measure and find a good match between the predicted probability distribution function and the measured sample frequencies in a test sequence.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"07 1","pages":"92-97 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Independent motion: the importance of history\",\"authors\":\"Robert Pless, T. Brodský, Y. Aloimonos\",\"doi\":\"10.1109/CVPR.1999.784614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a problem central in aerial visual surveillance applications-detection and tracking of small, independently moving objects in long and noisy video sequences. We directly use spatiotemporal image intensity gradient measurements to compute an exact model of background motion. This allows the creation of accurate mosaics over many frames and the definition of a constraint violation function which acts as an indication of independent motion. A novel temporal integration method maintains confidence measures over long subsequences without computing the optic flow, requiring object models, or using a Kalman filler. The mosaic acts as a stable feature frame, allowing precise localization of the independently moving objects. We present a statistical analysis of the effects of image noise on the constraint violation measure and find a good match between the predicted probability distribution function and the measured sample frequencies in a test sequence.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"07 1\",\"pages\":\"92-97 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑了航空视觉监视应用中的一个核心问题——在长而有噪声的视频序列中检测和跟踪小的、独立运动的物体。我们直接使用时空图像强度梯度测量来计算背景运动的精确模型。这允许在许多帧上创建精确的马赛克,并定义约束违反函数,作为独立运动的指示。一种新的时间积分方法在不计算光流,不需要对象模型或使用卡尔曼填充的情况下保持长子序列的置信度。马赛克作为一个稳定的特征框架,允许精确定位独立移动的物体。我们对图像噪声对约束违逆测度的影响进行了统计分析,发现在一个测试序列中,预测的概率分布函数与实测的样本频率之间有很好的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Independent motion: the importance of history
We consider a problem central in aerial visual surveillance applications-detection and tracking of small, independently moving objects in long and noisy video sequences. We directly use spatiotemporal image intensity gradient measurements to compute an exact model of background motion. This allows the creation of accurate mosaics over many frames and the definition of a constraint violation function which acts as an indication of independent motion. A novel temporal integration method maintains confidence measures over long subsequences without computing the optic flow, requiring object models, or using a Kalman filler. The mosaic acts as a stable feature frame, allowing precise localization of the independently moving objects. We present a statistical analysis of the effects of image noise on the constraint violation measure and find a good match between the predicted probability distribution function and the measured sample frequencies in a test sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1