{"title":"基于边缘计算算法的智能机器人的实现与性能评估","authors":"J. Chen, Ping-Feng Huang, Chung-Sheng Pi","doi":"10.1108/ir-02-2022-0045","DOIUrl":null,"url":null,"abstract":"\nPurpose\nApart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.\n\n\nDesign/methodology/approach\nCertainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.\n\n\nFindings\nSpecifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.\n\n\nOriginality/value\nThe work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"112 1","pages":"581-594"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The implementation and performance evaluation for a smart robot with edge computing algorithms\",\"authors\":\"J. Chen, Ping-Feng Huang, Chung-Sheng Pi\",\"doi\":\"10.1108/ir-02-2022-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nApart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.\\n\\n\\nDesign/methodology/approach\\nCertainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.\\n\\n\\nFindings\\nSpecifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.\\n\\n\\nOriginality/value\\nThe work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":\"112 1\",\"pages\":\"581-594\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-02-2022-0045\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-02-2022-0045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
The implementation and performance evaluation for a smart robot with edge computing algorithms
Purpose
Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.
Design/methodology/approach
Certainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.
Findings
Specifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.
Originality/value
The work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.