了解超过MSE的钻井系统能量

Wei Chen, Yuelin Shen, Zhengxin Zhang, C. Bogath, Richard Harmer
{"title":"了解超过MSE的钻井系统能量","authors":"Wei Chen, Yuelin Shen, Zhengxin Zhang, C. Bogath, Richard Harmer","doi":"10.2118/196050-ms","DOIUrl":null,"url":null,"abstract":"\n Mechanical specific energy (MSE) has been widely used in the industry to monitor drilling efficiency. However, it does not give detailed information about energy flow in the drilling system and lacks the resolution to identify the root cause of energy loss. The drilling operation is a dynamic process. Energy input may be from a surface-drive system (top drive or rotary table) or a mud motor placed downhole. In a perfect world, all of the energy is used to drill the rock. However, some of the input energy may reside in the drillstring as strain and kinetic energy due to the deformation and motion of the drillstring. Drilling energy is dissipated due to shock, vibration, fluid damping, and frictional contact between the drillstring and wellbore. A novel method has been developed to calculate the drilling energy flow in the drillstring and to enable better drilling energy management by maximizing useful energy consumption and reducing energy waste. The method provides a new way to understand and improve drilling efficiency.\n The method is based on an advanced transient drilling dynamics model which simulates the full drilling system from surface to bit. The entire drillstring is meshed using 3D beam elements, and its dynamic response history is solved by the finite element method (FEM). The energy input can be calculated from surface drilling parameters, such as torque, rotation speed, flow rate, and motor differential pressure. With the simulated history of forces and dynamics of the drillstring, the corresponding strain energy and kinetic energy of the drillstring can be evaluated. The detailed cutting structure model can provide insight on the energy amount consumed by the rock cutting action of the bit and reamer. Putting all the components together leads to a holistic calculation workflow of drilling energy.\n Field case studies were conducted to examine the effectiveness of this method. The studies showed the drillstring strain energy and kinetic energy are good performance indicators for drillstring reliability and stability because these energy variables reflect the severity of loading and vibration in the drillstring. The energy variables possess clear signatures for interpretation of different downhole vibration modes. Currently, the drilling efficiency is normally evaluated by MSE, which represents the amount of energy needed to remove a unit volume of rock using the surface drilling data. In this study, the energy loss is calculated to understand the percentage of input energy dissipated due to the interaction of the drillstring with the environment. In contrast to MSE, the calculation provides a more direct and detailed measurement of drilling efficiency. It gives a methodology for understanding detailed energy flow in the drilling system under different drilling vibration modes. It can be applied to bit selection, bottomhole assembly (BHA) design, and drilling parameter optimization to achieve better drilling energy management and improve drilling efficiency.\n The novel approach calculates drilling energy based on the transient dynamics simulation of the full drilling system. It provides a detailed and holistic view of drilling energy input, propagation, and consumption. This method could help identify the inefficient drilling conditions and optimize drilling operation through evaluating and comparing different options.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Understand Drilling System Energy Beyond MSE\",\"authors\":\"Wei Chen, Yuelin Shen, Zhengxin Zhang, C. Bogath, Richard Harmer\",\"doi\":\"10.2118/196050-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mechanical specific energy (MSE) has been widely used in the industry to monitor drilling efficiency. However, it does not give detailed information about energy flow in the drilling system and lacks the resolution to identify the root cause of energy loss. The drilling operation is a dynamic process. Energy input may be from a surface-drive system (top drive or rotary table) or a mud motor placed downhole. In a perfect world, all of the energy is used to drill the rock. However, some of the input energy may reside in the drillstring as strain and kinetic energy due to the deformation and motion of the drillstring. Drilling energy is dissipated due to shock, vibration, fluid damping, and frictional contact between the drillstring and wellbore. A novel method has been developed to calculate the drilling energy flow in the drillstring and to enable better drilling energy management by maximizing useful energy consumption and reducing energy waste. The method provides a new way to understand and improve drilling efficiency.\\n The method is based on an advanced transient drilling dynamics model which simulates the full drilling system from surface to bit. The entire drillstring is meshed using 3D beam elements, and its dynamic response history is solved by the finite element method (FEM). The energy input can be calculated from surface drilling parameters, such as torque, rotation speed, flow rate, and motor differential pressure. With the simulated history of forces and dynamics of the drillstring, the corresponding strain energy and kinetic energy of the drillstring can be evaluated. The detailed cutting structure model can provide insight on the energy amount consumed by the rock cutting action of the bit and reamer. Putting all the components together leads to a holistic calculation workflow of drilling energy.\\n Field case studies were conducted to examine the effectiveness of this method. The studies showed the drillstring strain energy and kinetic energy are good performance indicators for drillstring reliability and stability because these energy variables reflect the severity of loading and vibration in the drillstring. The energy variables possess clear signatures for interpretation of different downhole vibration modes. Currently, the drilling efficiency is normally evaluated by MSE, which represents the amount of energy needed to remove a unit volume of rock using the surface drilling data. In this study, the energy loss is calculated to understand the percentage of input energy dissipated due to the interaction of the drillstring with the environment. In contrast to MSE, the calculation provides a more direct and detailed measurement of drilling efficiency. It gives a methodology for understanding detailed energy flow in the drilling system under different drilling vibration modes. It can be applied to bit selection, bottomhole assembly (BHA) design, and drilling parameter optimization to achieve better drilling energy management and improve drilling efficiency.\\n The novel approach calculates drilling energy based on the transient dynamics simulation of the full drilling system. It provides a detailed and holistic view of drilling energy input, propagation, and consumption. This method could help identify the inefficient drilling conditions and optimize drilling operation through evaluating and comparing different options.\",\"PeriodicalId\":10909,\"journal\":{\"name\":\"Day 2 Tue, October 01, 2019\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 01, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196050-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196050-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

机械比能(MSE)已广泛应用于钻井效率监测。然而,它不能提供钻井系统中能量流动的详细信息,也无法确定能量损失的根本原因。钻井作业是一个动态的过程。能量输入可能来自地面驱动系统(顶驱或转盘)或井下泥浆马达。在一个完美的世界里,所有的能量都被用来钻岩石。然而,由于钻柱的变形和运动,一些输入能量可能以应变和动能的形式存在于钻柱中。由于冲击、振动、流体阻尼以及钻柱与井筒之间的摩擦接触,钻井能量被耗散。开发了一种新的方法来计算钻柱中的钻井能量流,并通过最大化有效能量消耗和减少能源浪费来实现更好的钻井能量管理。该方法为认识和提高钻井效率提供了新的途径。该方法基于一种先进的瞬态钻井动力学模型,该模型模拟了从地面到钻头的整个钻井系统。采用三维梁单元对整个钻柱进行网格划分,采用有限元法求解钻柱的动力响应历史。能量输入可以通过地面钻井参数计算,如扭矩、转速、流量和电机压差。通过模拟钻柱受力和动力学过程,可以求出相应的钻柱应变能和动能。详细的切削结构模型可以深入了解钻头和扩眼器切割岩石所消耗的能量。将所有组件放在一起,就形成了钻井能量的整体计算流程。现场案例研究验证了该方法的有效性。研究表明,钻柱应变能和动能反映了钻柱载荷和振动的严重程度,是衡量钻柱可靠性和稳定性的良好性能指标。能量变量具有清晰的特征,可以解释不同的井下振动模式。目前,钻井效率通常通过MSE来评估,MSE表示使用地面钻井数据移除单位体积岩石所需的能量。在本研究中,计算能量损失是为了了解由于钻柱与环境相互作用而消耗的输入能量的百分比。与MSE相比,该计算方法可以更直接、更详细地衡量钻井效率。给出了一种了解不同钻井振动模式下钻井系统能量流动的方法。它可以应用于钻头选择、底部钻具组合(BHA)设计和钻井参数优化,以实现更好的钻井能量管理,提高钻井效率。该方法基于全钻井系统的瞬态动力学仿真计算钻井能量。它提供了钻井能量输入、传播和消耗的详细和全面的视图。该方法可以通过对不同方案的评价和比较,识别低效钻井工况,优化钻井作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understand Drilling System Energy Beyond MSE
Mechanical specific energy (MSE) has been widely used in the industry to monitor drilling efficiency. However, it does not give detailed information about energy flow in the drilling system and lacks the resolution to identify the root cause of energy loss. The drilling operation is a dynamic process. Energy input may be from a surface-drive system (top drive or rotary table) or a mud motor placed downhole. In a perfect world, all of the energy is used to drill the rock. However, some of the input energy may reside in the drillstring as strain and kinetic energy due to the deformation and motion of the drillstring. Drilling energy is dissipated due to shock, vibration, fluid damping, and frictional contact between the drillstring and wellbore. A novel method has been developed to calculate the drilling energy flow in the drillstring and to enable better drilling energy management by maximizing useful energy consumption and reducing energy waste. The method provides a new way to understand and improve drilling efficiency. The method is based on an advanced transient drilling dynamics model which simulates the full drilling system from surface to bit. The entire drillstring is meshed using 3D beam elements, and its dynamic response history is solved by the finite element method (FEM). The energy input can be calculated from surface drilling parameters, such as torque, rotation speed, flow rate, and motor differential pressure. With the simulated history of forces and dynamics of the drillstring, the corresponding strain energy and kinetic energy of the drillstring can be evaluated. The detailed cutting structure model can provide insight on the energy amount consumed by the rock cutting action of the bit and reamer. Putting all the components together leads to a holistic calculation workflow of drilling energy. Field case studies were conducted to examine the effectiveness of this method. The studies showed the drillstring strain energy and kinetic energy are good performance indicators for drillstring reliability and stability because these energy variables reflect the severity of loading and vibration in the drillstring. The energy variables possess clear signatures for interpretation of different downhole vibration modes. Currently, the drilling efficiency is normally evaluated by MSE, which represents the amount of energy needed to remove a unit volume of rock using the surface drilling data. In this study, the energy loss is calculated to understand the percentage of input energy dissipated due to the interaction of the drillstring with the environment. In contrast to MSE, the calculation provides a more direct and detailed measurement of drilling efficiency. It gives a methodology for understanding detailed energy flow in the drilling system under different drilling vibration modes. It can be applied to bit selection, bottomhole assembly (BHA) design, and drilling parameter optimization to achieve better drilling energy management and improve drilling efficiency. The novel approach calculates drilling energy based on the transient dynamics simulation of the full drilling system. It provides a detailed and holistic view of drilling energy input, propagation, and consumption. This method could help identify the inefficient drilling conditions and optimize drilling operation through evaluating and comparing different options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Autonomous Inflow Control Valve Flow Performance Within Heavy Oil-SAGD Thermal Flow Loop Reactive vs Proactive Intelligent Well Injection Evaluation for EOR in a Stratified GOM Deepwater Wilcox Reservoir using Integrated Simulation-Surface Network Modeling A Novel Workflow for Oil Production Forecasting using Ensemble-Based Decline Curve Analysis An Artificial Intelligence Approach to Predict the Water Saturation in Carbonate Reservoir Rocks Characterization of Organic Pores within High-Maturation Shale Gas Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1