K. Hattori, Daisuke Matsushima, Kensuke Demura, Masaya Kamiya
{"title":"颗粒和图案判别冷冻清洗方法","authors":"K. Hattori, Daisuke Matsushima, Kensuke Demura, Masaya Kamiya","doi":"10.1117/1.JMM.19.4.044401","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Although the wet cleaning process has been widely used in semiconductor device manufacturing due to its convenience, it faces theoretical limits. That is, when the size of the objected particle is smaller than 100 nm, it is buried in the stagnant layer where there is substantially no fluid flow. Aim: Only small particles below the stagnant layer (<100 nm) is removed without any damage to the fine patterns or substrate: pattern collapse, critical dimension shift, and optical property shift. Approach: Utilizing unique characteristics of water: volume expansion when freezing, solid (ice) is lighter than liquid (water), and particles adhered the substrate is peeled off from the substrate and rise to the water surface along with the surrounding ice. Results: By repeating the cycle of cooling, thawing, and rinsing, polystyrene sphere particle of 80 nm in diameter can be removed with high particle removal efficiency (PRE >90 % ) and no negative influences on the pattern or substrate. Conclusions: A new cleaning method for very small (<100 nm) particles is proposed with high PRE and low damage. This method is thought to be applied to every process if water can infiltrate into the gap between the particles and the substrate.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"105 1","pages":"044401 - 044401"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle and pattern discriminant freeze-cleaning method\",\"authors\":\"K. Hattori, Daisuke Matsushima, Kensuke Demura, Masaya Kamiya\",\"doi\":\"10.1117/1.JMM.19.4.044401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Background: Although the wet cleaning process has been widely used in semiconductor device manufacturing due to its convenience, it faces theoretical limits. That is, when the size of the objected particle is smaller than 100 nm, it is buried in the stagnant layer where there is substantially no fluid flow. Aim: Only small particles below the stagnant layer (<100 nm) is removed without any damage to the fine patterns or substrate: pattern collapse, critical dimension shift, and optical property shift. Approach: Utilizing unique characteristics of water: volume expansion when freezing, solid (ice) is lighter than liquid (water), and particles adhered the substrate is peeled off from the substrate and rise to the water surface along with the surrounding ice. Results: By repeating the cycle of cooling, thawing, and rinsing, polystyrene sphere particle of 80 nm in diameter can be removed with high particle removal efficiency (PRE >90 % ) and no negative influences on the pattern or substrate. Conclusions: A new cleaning method for very small (<100 nm) particles is proposed with high PRE and low damage. This method is thought to be applied to every process if water can infiltrate into the gap between the particles and the substrate.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"105 1\",\"pages\":\"044401 - 044401\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.19.4.044401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.19.4.044401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Particle and pattern discriminant freeze-cleaning method
Abstract. Background: Although the wet cleaning process has been widely used in semiconductor device manufacturing due to its convenience, it faces theoretical limits. That is, when the size of the objected particle is smaller than 100 nm, it is buried in the stagnant layer where there is substantially no fluid flow. Aim: Only small particles below the stagnant layer (<100 nm) is removed without any damage to the fine patterns or substrate: pattern collapse, critical dimension shift, and optical property shift. Approach: Utilizing unique characteristics of water: volume expansion when freezing, solid (ice) is lighter than liquid (water), and particles adhered the substrate is peeled off from the substrate and rise to the water surface along with the surrounding ice. Results: By repeating the cycle of cooling, thawing, and rinsing, polystyrene sphere particle of 80 nm in diameter can be removed with high particle removal efficiency (PRE >90 % ) and no negative influences on the pattern or substrate. Conclusions: A new cleaning method for very small (<100 nm) particles is proposed with high PRE and low damage. This method is thought to be applied to every process if water can infiltrate into the gap between the particles and the substrate.