基于硒化铟的RAM相变行为研究及其作为存储元件的有效性

S. Sourav, Amit Krishna Dwivedi, A. Islam
{"title":"基于硒化铟的RAM相变行为研究及其作为存储元件的有效性","authors":"S. Sourav, Amit Krishna Dwivedi, A. Islam","doi":"10.1155/2016/6123268","DOIUrl":null,"url":null,"abstract":"Phase transform properties of Indium Selenide (In2Se3) based Random Access Memory (RAM) have been explored in this paper. Phase change random access memory (PCRAM) is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST) materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3) material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"72 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element\",\"authors\":\"S. Sourav, Amit Krishna Dwivedi, A. Islam\",\"doi\":\"10.1155/2016/6123268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase transform properties of Indium Selenide (In2Se3) based Random Access Memory (RAM) have been explored in this paper. Phase change random access memory (PCRAM) is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST) materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3) material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"72 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6123268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6123268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了基于硒化铟(In2Se3)的随机存取存储器(RAM)的相变特性。相变随机存取存储器(PCRAM)是一种有吸引力的固态非易失性存储器,具有满足当前各种存储设计技术需求的潜力。已经报道的PCRAM模型主要基于锗锑碲(Ge2Sb2Te5或GST)材料作为其主要成分。然而,使用GST材料的PCRAM缺乏记忆元件所需的一些重要的记忆属性,例如相变材料中高电阻非晶态和高导电晶态之间的较大电阻裕度。本文研究了硒化铟(In2Se3)材料的各种电学和组成性能,并与同类材料进行了比较,主要关注相变性能。为了实现这一目标,本文报道了一种基于In2Se3的PCRAM模型的SPICE模型。报告的模型也被验证为通过将其与本工作中提出的读/写电路相关联来充当记忆单元。仿真结果表明,在208 μA的脉冲持续时间为100 μs的情况下,PCRAM具有良好的保持性和低功耗。同样,一个持续20 ns的11.7 μA的复位脉冲可以使PCRAM处于非晶态。在Verilog-A中对基于In2Se3的PCRAM进行了建模,并使用SPICE模拟器对仿真结果进行了广泛验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element
Phase transform properties of Indium Selenide (In2Se3) based Random Access Memory (RAM) have been explored in this paper. Phase change random access memory (PCRAM) is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST) materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3) material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal Investigation of Properties of Silk Fiber Produced in Ethiopia Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1