基于群智能算法的智能最大功率点跟踪(MPPT)技术设计

Tapas Chakrabarti, Udit Sharma, Suvrajit Manna, Tyajodeep Chakrabarti, S. Sarkar
{"title":"基于群智能算法的智能最大功率点跟踪(MPPT)技术设计","authors":"Tapas Chakrabarti, Udit Sharma, Suvrajit Manna, Tyajodeep Chakrabarti, S. Sarkar","doi":"10.1109/ICPACE.2015.7274938","DOIUrl":null,"url":null,"abstract":"Main objective of this paper is to develop an intelligent and efficient Maximum Power Point Tracking (MPPT) technique. Two most recently introduced and popular swarm intelligent based algorithms: Firefly algorithm (FA) and Artificial Bee Colony (ABC) has been used in this study to develop a novel technique to track the Maximum Power Point (MPP) of a solar cell module. The performances of two algorithms in this context have been compared with other popular evolutionary computing techniques like PSO, DE and GA. Simulations were done in MATLAB/SIMULINK environment and simulation results show that proposed approach can obtain MPP to a good precision under different solar irradiance and environmental temperatures.","PeriodicalId":6644,"journal":{"name":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","volume":"102 1","pages":"173-177"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design of intelligent Maximum Power Point Tracking (MPPT) technique based on swarm intelligence based algorithms\",\"authors\":\"Tapas Chakrabarti, Udit Sharma, Suvrajit Manna, Tyajodeep Chakrabarti, S. Sarkar\",\"doi\":\"10.1109/ICPACE.2015.7274938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Main objective of this paper is to develop an intelligent and efficient Maximum Power Point Tracking (MPPT) technique. Two most recently introduced and popular swarm intelligent based algorithms: Firefly algorithm (FA) and Artificial Bee Colony (ABC) has been used in this study to develop a novel technique to track the Maximum Power Point (MPP) of a solar cell module. The performances of two algorithms in this context have been compared with other popular evolutionary computing techniques like PSO, DE and GA. Simulations were done in MATLAB/SIMULINK environment and simulation results show that proposed approach can obtain MPP to a good precision under different solar irradiance and environmental temperatures.\",\"PeriodicalId\":6644,\"journal\":{\"name\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"volume\":\"102 1\",\"pages\":\"173-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPACE.2015.7274938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPACE.2015.7274938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文的主要目的是开发一种智能、高效的最大功率点跟踪(MPPT)技术。本研究采用了两种最新引入和流行的基于群体智能的算法:萤火虫算法(FA)和人工蜂群算法(ABC)来开发一种跟踪太阳能电池组件最大功率点(MPP)的新技术。在这种情况下,这两种算法的性能已经与其他流行的进化计算技术(如PSO, DE和GA)进行了比较。在MATLAB/SIMULINK环境下进行了仿真,仿真结果表明,该方法在不同太阳辐照度和环境温度下均能获得较好的MPP精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of intelligent Maximum Power Point Tracking (MPPT) technique based on swarm intelligence based algorithms
Main objective of this paper is to develop an intelligent and efficient Maximum Power Point Tracking (MPPT) technique. Two most recently introduced and popular swarm intelligent based algorithms: Firefly algorithm (FA) and Artificial Bee Colony (ABC) has been used in this study to develop a novel technique to track the Maximum Power Point (MPP) of a solar cell module. The performances of two algorithms in this context have been compared with other popular evolutionary computing techniques like PSO, DE and GA. Simulations were done in MATLAB/SIMULINK environment and simulation results show that proposed approach can obtain MPP to a good precision under different solar irradiance and environmental temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asset management in smart grids using improved Dissolved Gas Analysis PLC based intelligent power factor correctors for industrial power systems-A case study A multiple environment dispatch problem solution using ant colony optimization for micro-grids Modeling, simulation and comparative study of new compound alloy based P-I-N solar cells - An efficient way of energy management Modeling and analysis of 6 pulse rectifier used in HVDC link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1