面向显著性模型的卷积神经网络在遥感图像云检测中的应用

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2021-12-20 DOI:10.3233/mgs-210352
Jun Zhang, Jun-Jun Liu
{"title":"面向显著性模型的卷积神经网络在遥感图像云检测中的应用","authors":"Jun Zhang, Jun-Jun Liu","doi":"10.3233/mgs-210352","DOIUrl":null,"url":null,"abstract":"Remote sensing is an indispensable technical way for monitoring earth resources and environmental changes. However, optical remote sensing images often contain a large number of cloud, especially in tropical rain forest areas, make it difficult to obtain completely cloud-free remote sensing images. Therefore, accurate cloud detection is of great research value for optical remote sensing applications. In this paper, we propose a saliency model-oriented convolution neural network for cloud detection in remote sensing images. Firstly, we adopt Kernel Principal Component Analysis (KCPA) to unsupervised pre-training the network. Secondly, small labeled samples are used to fine-tune the network structure. And, remote sensing images are performed with super-pixel approach before cloud detection to eliminate the irrelevant backgrounds and non-clouds object. Thirdly, the image blocks are input into the trained convolutional neural network (CNN) for cloud detection. Meanwhile, the segmented image will be recovered. Fourth, we fuse the detected result with the saliency map of raw image to further improve the accuracy of detection result. Experiments show that the proposed method can accurately detect cloud. Compared to other state-of-the-art cloud detection method, the new method has better robustness.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"11 1","pages":"235-247"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A saliency model-oriented convolution neural network for cloud detection in remote sensing images\",\"authors\":\"Jun Zhang, Jun-Jun Liu\",\"doi\":\"10.3233/mgs-210352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing is an indispensable technical way for monitoring earth resources and environmental changes. However, optical remote sensing images often contain a large number of cloud, especially in tropical rain forest areas, make it difficult to obtain completely cloud-free remote sensing images. Therefore, accurate cloud detection is of great research value for optical remote sensing applications. In this paper, we propose a saliency model-oriented convolution neural network for cloud detection in remote sensing images. Firstly, we adopt Kernel Principal Component Analysis (KCPA) to unsupervised pre-training the network. Secondly, small labeled samples are used to fine-tune the network structure. And, remote sensing images are performed with super-pixel approach before cloud detection to eliminate the irrelevant backgrounds and non-clouds object. Thirdly, the image blocks are input into the trained convolutional neural network (CNN) for cloud detection. Meanwhile, the segmented image will be recovered. Fourth, we fuse the detected result with the saliency map of raw image to further improve the accuracy of detection result. Experiments show that the proposed method can accurately detect cloud. Compared to other state-of-the-art cloud detection method, the new method has better robustness.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":\"11 1\",\"pages\":\"235-247\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgs-210352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-210352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

遥感是监测地球资源和环境变化不可缺少的技术手段。然而,光学遥感图像往往含有大量的云,特别是在热带雨林地区,很难获得完全无云的遥感图像。因此,精确的云检测对于光学遥感应用具有重要的研究价值。本文提出了一种面向显著性模型的卷积神经网络用于遥感图像云检测。首先采用核主成分分析(KCPA)对网络进行无监督预训练。其次,使用小标记样本对网络结构进行微调。在云检测前对遥感图像进行超像素处理,消除不相关背景和非云目标。第三,将图像块输入训练好的卷积神经网络(CNN)进行云检测。同时,分割后的图像将被恢复。第四,将检测结果与原始图像的显著性图进行融合,进一步提高检测结果的准确性。实验表明,该方法能够准确地检测出云。与其他先进的云检测方法相比,新方法具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A saliency model-oriented convolution neural network for cloud detection in remote sensing images
Remote sensing is an indispensable technical way for monitoring earth resources and environmental changes. However, optical remote sensing images often contain a large number of cloud, especially in tropical rain forest areas, make it difficult to obtain completely cloud-free remote sensing images. Therefore, accurate cloud detection is of great research value for optical remote sensing applications. In this paper, we propose a saliency model-oriented convolution neural network for cloud detection in remote sensing images. Firstly, we adopt Kernel Principal Component Analysis (KCPA) to unsupervised pre-training the network. Secondly, small labeled samples are used to fine-tune the network structure. And, remote sensing images are performed with super-pixel approach before cloud detection to eliminate the irrelevant backgrounds and non-clouds object. Thirdly, the image blocks are input into the trained convolutional neural network (CNN) for cloud detection. Meanwhile, the segmented image will be recovered. Fourth, we fuse the detected result with the saliency map of raw image to further improve the accuracy of detection result. Experiments show that the proposed method can accurately detect cloud. Compared to other state-of-the-art cloud detection method, the new method has better robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media Hybrid trust-based optimized virtual machine migration for dynamic load balancing and replica management in heterogeneous cloud Load balancing model for cloud environment using swarm intelligence technique An evolutionary mechanism of social preference for knowledge sharing in crowdsourcing communities Skin cancer detection: Improved deep belief network with optimal feature selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1