{"title":"偏心条件下具有表面波纹的滑动轴承性能分析","authors":"Arun Bangotra, Sanjay Sharma, Reza Taufique, Deepak Byotra","doi":"10.1177/13506501231177485","DOIUrl":null,"url":null,"abstract":"In this present study, the effect of surface waviness on the performance of journal bearing operating in misaligned conditions has been investigated. The journal’s misaligned conditions in the present analysis are taken about the circumferential, the axial, and both axes. For computing the pressure of lubricant inside the bearing, the finite element method has been applied to solve the Reynolds equation and thus static parameters are obtained. The static parameters, that is, load carrying capacity and coefficient of friction are evaluated at different waviness variables and are compared with misaligned journal bearing without surface waviness. It is observed that misalignment considered in both axes has the most severe effect on static performance parameters as compared to misalignment only in the circumferential or axial axis. With the increase in circumferential waviness number up to n = 5, the load-carrying capacity increases, and the coefficient of friction decreases under high eccentricity ratios. Change in waviness amplitude also impacts the bearing performance. Axial waviness always deteriorates the bearing performance. Combined waviness increases the load carrying capacity and decreases the coefficient of friction when circumferential waviness number n = 5 and axial waviness number m = 2. The highest performance enhancement ratio is attained at an eccentricity ratio of 0.8 with a circumferential waviness number n of 5, axial waviness number m of 2, and dimensionless waviness amplitude δ * of 0.075.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"5 1","pages":"1657 - 1669"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance analysis of journal bearing having surface waviness operating under misaligned condition\",\"authors\":\"Arun Bangotra, Sanjay Sharma, Reza Taufique, Deepak Byotra\",\"doi\":\"10.1177/13506501231177485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this present study, the effect of surface waviness on the performance of journal bearing operating in misaligned conditions has been investigated. The journal’s misaligned conditions in the present analysis are taken about the circumferential, the axial, and both axes. For computing the pressure of lubricant inside the bearing, the finite element method has been applied to solve the Reynolds equation and thus static parameters are obtained. The static parameters, that is, load carrying capacity and coefficient of friction are evaluated at different waviness variables and are compared with misaligned journal bearing without surface waviness. It is observed that misalignment considered in both axes has the most severe effect on static performance parameters as compared to misalignment only in the circumferential or axial axis. With the increase in circumferential waviness number up to n = 5, the load-carrying capacity increases, and the coefficient of friction decreases under high eccentricity ratios. Change in waviness amplitude also impacts the bearing performance. Axial waviness always deteriorates the bearing performance. Combined waviness increases the load carrying capacity and decreases the coefficient of friction when circumferential waviness number n = 5 and axial waviness number m = 2. The highest performance enhancement ratio is attained at an eccentricity ratio of 0.8 with a circumferential waviness number n of 5, axial waviness number m of 2, and dimensionless waviness amplitude δ * of 0.075.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"5 1\",\"pages\":\"1657 - 1669\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231177485\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231177485","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Performance analysis of journal bearing having surface waviness operating under misaligned condition
In this present study, the effect of surface waviness on the performance of journal bearing operating in misaligned conditions has been investigated. The journal’s misaligned conditions in the present analysis are taken about the circumferential, the axial, and both axes. For computing the pressure of lubricant inside the bearing, the finite element method has been applied to solve the Reynolds equation and thus static parameters are obtained. The static parameters, that is, load carrying capacity and coefficient of friction are evaluated at different waviness variables and are compared with misaligned journal bearing without surface waviness. It is observed that misalignment considered in both axes has the most severe effect on static performance parameters as compared to misalignment only in the circumferential or axial axis. With the increase in circumferential waviness number up to n = 5, the load-carrying capacity increases, and the coefficient of friction decreases under high eccentricity ratios. Change in waviness amplitude also impacts the bearing performance. Axial waviness always deteriorates the bearing performance. Combined waviness increases the load carrying capacity and decreases the coefficient of friction when circumferential waviness number n = 5 and axial waviness number m = 2. The highest performance enhancement ratio is attained at an eccentricity ratio of 0.8 with a circumferential waviness number n of 5, axial waviness number m of 2, and dimensionless waviness amplitude δ * of 0.075.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).