软件定向数据访问调度,降低磁盘能耗

Yuanrui Zhang, Jun Liu, M. Kandemir
{"title":"软件定向数据访问调度,降低磁盘能耗","authors":"Yuanrui Zhang, Jun Liu, M. Kandemir","doi":"10.1145/1996130.1996175","DOIUrl":null,"url":null,"abstract":"Most existing research in disk power management has focused on exploiting idle periods of disks. Both hardware power-saving mechanisms (such as spin-down disks and multi-speed disks) and complementary software strategies (such as code and data layout transformations to increase the length of idle periods) have been explored. However, while hardware power-saving mechanisms cannot handle short idle periods of high-performance parallel applications, prior code/data reorganization strategies typically require extensive code modifications. In this paper, we propose and evaluate a compiler-directed data access (I/O call) scheduling framework for saving disk energy, which groups as many data requests as possible in a shorter period, thus creating longer disk idle periods for improving the effectiveness of hardware power-saving mechanisms. As compared to prior software based efforts, it requires no code or data restructuring. We evaluate our approach using six application programs in a cluster-based simulation environment. The experimental results show that it improves the effectiveness of both spin-down disks and multi-speed disks with doubled power savings on average.","PeriodicalId":6300,"journal":{"name":"2012 IEEE 32nd International Conference on Distributed Computing Systems","volume":"17 1","pages":"596-605"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Software-Directed Data Access Scheduling for Reducing Disk Energy Consumption\",\"authors\":\"Yuanrui Zhang, Jun Liu, M. Kandemir\",\"doi\":\"10.1145/1996130.1996175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing research in disk power management has focused on exploiting idle periods of disks. Both hardware power-saving mechanisms (such as spin-down disks and multi-speed disks) and complementary software strategies (such as code and data layout transformations to increase the length of idle periods) have been explored. However, while hardware power-saving mechanisms cannot handle short idle periods of high-performance parallel applications, prior code/data reorganization strategies typically require extensive code modifications. In this paper, we propose and evaluate a compiler-directed data access (I/O call) scheduling framework for saving disk energy, which groups as many data requests as possible in a shorter period, thus creating longer disk idle periods for improving the effectiveness of hardware power-saving mechanisms. As compared to prior software based efforts, it requires no code or data restructuring. We evaluate our approach using six application programs in a cluster-based simulation environment. The experimental results show that it improves the effectiveness of both spin-down disks and multi-speed disks with doubled power savings on average.\",\"PeriodicalId\":6300,\"journal\":{\"name\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"volume\":\"17 1\",\"pages\":\"596-605\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1996130.1996175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 32nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1996130.1996175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数现有的磁盘电源管理研究都集中在利用磁盘的空闲时间。对硬件节能机制(如休眠磁盘和多速磁盘)和补充软件策略(如代码和数据布局转换以增加空闲时间长度)都进行了探索。然而,虽然硬件节能机制不能处理高性能并行应用程序的短空闲期,但先前的代码/数据重组策略通常需要大量的代码修改。在本文中,我们提出并评估了一种用于节省磁盘能量的编译器定向数据访问(I/O调用)调度框架,该框架在较短的时间内将尽可能多的数据请求分组,从而创建较长的磁盘空闲时间,以提高硬件节能机制的有效性。与之前基于软件的工作相比,它不需要代码或数据重构。我们在基于集群的仿真环境中使用六个应用程序来评估我们的方法。实验结果表明,该方法提高了休眠磁盘和多速磁盘的效率,平均节省了一倍的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software-Directed Data Access Scheduling for Reducing Disk Energy Consumption
Most existing research in disk power management has focused on exploiting idle periods of disks. Both hardware power-saving mechanisms (such as spin-down disks and multi-speed disks) and complementary software strategies (such as code and data layout transformations to increase the length of idle periods) have been explored. However, while hardware power-saving mechanisms cannot handle short idle periods of high-performance parallel applications, prior code/data reorganization strategies typically require extensive code modifications. In this paper, we propose and evaluate a compiler-directed data access (I/O call) scheduling framework for saving disk energy, which groups as many data requests as possible in a shorter period, thus creating longer disk idle periods for improving the effectiveness of hardware power-saving mechanisms. As compared to prior software based efforts, it requires no code or data restructuring. We evaluate our approach using six application programs in a cluster-based simulation environment. The experimental results show that it improves the effectiveness of both spin-down disks and multi-speed disks with doubled power savings on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation of Multiple Quantum well based InGaN/GaN Light Emitting Diode for High power applications Virtual Reality based System for Training and Monitoring Fire Safety Awareness for Children with Autism Spectrum Disorder A Cognitive Based Channel Assortment Using Ant-Colony Optimized Stable Path Selection in an IoTN Design and Implementation of DNA Based Cryptographic Algorithm A Compact Wearable 2.45 GHz Antenna for WBAN Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1