{"title":"分类问题的自适应多目标特征选择方法","authors":"Yu Xue, Hao Zhu, Ferrante Neri","doi":"10.3233/ica-210664","DOIUrl":null,"url":null,"abstract":"In classification tasks, feature selection (FS) can reduce the data dimensionality and may also improve classification accuracy, both of which are commonly treated as the two objectives in FS problems. Many meta-heuristic algorithms have been applied to solve the FS problems and they perform satisfactorily when the problem is relatively simple. However, once the dimensionality of the datasets grows, their performance drops dramatically. This paper proposes a self-adaptive multi-objective genetic algorithm (SaMOGA) for FS, which is designed to maintain a high performance even when the dimensionality of the datasets grows. The main concept of SaMOGA lies in the dynamic selection of five different crossover operators in different evolution process by applying a self-adaptive mechanism. Meanwhile, a search stagnation detection mechanism is also proposed to prevent premature convergence. In the experiments, we compare SaMOGA with five multi-objective FS algorithms on sixteen datasets. According to the experimental results, SaMOGA yields a set of well converged and well distributed solutions on most data sets, indicating that SaMOGA can guarantee classification performance while removing many features, and the advantage over its counterparts is more obvious when the dimensionality of datasets grows.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"15 1","pages":"3-21"},"PeriodicalIF":5.8000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A self-adaptive multi-objective feature selection approach for classification problems\",\"authors\":\"Yu Xue, Hao Zhu, Ferrante Neri\",\"doi\":\"10.3233/ica-210664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In classification tasks, feature selection (FS) can reduce the data dimensionality and may also improve classification accuracy, both of which are commonly treated as the two objectives in FS problems. Many meta-heuristic algorithms have been applied to solve the FS problems and they perform satisfactorily when the problem is relatively simple. However, once the dimensionality of the datasets grows, their performance drops dramatically. This paper proposes a self-adaptive multi-objective genetic algorithm (SaMOGA) for FS, which is designed to maintain a high performance even when the dimensionality of the datasets grows. The main concept of SaMOGA lies in the dynamic selection of five different crossover operators in different evolution process by applying a self-adaptive mechanism. Meanwhile, a search stagnation detection mechanism is also proposed to prevent premature convergence. In the experiments, we compare SaMOGA with five multi-objective FS algorithms on sixteen datasets. According to the experimental results, SaMOGA yields a set of well converged and well distributed solutions on most data sets, indicating that SaMOGA can guarantee classification performance while removing many features, and the advantage over its counterparts is more obvious when the dimensionality of datasets grows.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"15 1\",\"pages\":\"3-21\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-210664\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-210664","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A self-adaptive multi-objective feature selection approach for classification problems
In classification tasks, feature selection (FS) can reduce the data dimensionality and may also improve classification accuracy, both of which are commonly treated as the two objectives in FS problems. Many meta-heuristic algorithms have been applied to solve the FS problems and they perform satisfactorily when the problem is relatively simple. However, once the dimensionality of the datasets grows, their performance drops dramatically. This paper proposes a self-adaptive multi-objective genetic algorithm (SaMOGA) for FS, which is designed to maintain a high performance even when the dimensionality of the datasets grows. The main concept of SaMOGA lies in the dynamic selection of five different crossover operators in different evolution process by applying a self-adaptive mechanism. Meanwhile, a search stagnation detection mechanism is also proposed to prevent premature convergence. In the experiments, we compare SaMOGA with five multi-objective FS algorithms on sixteen datasets. According to the experimental results, SaMOGA yields a set of well converged and well distributed solutions on most data sets, indicating that SaMOGA can guarantee classification performance while removing many features, and the advantage over its counterparts is more obvious when the dimensionality of datasets grows.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.