{"title":"等离子体掺杂(PLAD)在先进存储器件制造中的应用","authors":"S. Qin","doi":"10.1109/IIT.2014.6940017","DOIUrl":null,"url":null,"abstract":"PLAD (plasma doping) is promising for both evolutionary and revolutionary doping options because of its unique advantages which can overcome or minimize many of the issues of the beam-line (BL) based implants. In this talk, I present developments of PLAD on both planar and non-planar 3D device structures. Comparing with the conventional BL implants, PLAD shows not only a significant production enhancement, but also a significant device performance improvement and 3D structure doping capability, including an 80% contact resistance reduction, more than 25% drive current increase on planar devices, and 23% series resistance reduction, 25% drive current increase on non-planar 3D devices.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"46 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plasma doping (PLAD) for advanced memory device manufacturing\",\"authors\":\"S. Qin\",\"doi\":\"10.1109/IIT.2014.6940017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PLAD (plasma doping) is promising for both evolutionary and revolutionary doping options because of its unique advantages which can overcome or minimize many of the issues of the beam-line (BL) based implants. In this talk, I present developments of PLAD on both planar and non-planar 3D device structures. Comparing with the conventional BL implants, PLAD shows not only a significant production enhancement, but also a significant device performance improvement and 3D structure doping capability, including an 80% contact resistance reduction, more than 25% drive current increase on planar devices, and 23% series resistance reduction, 25% drive current increase on non-planar 3D devices.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"46 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6940017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6940017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma doping (PLAD) for advanced memory device manufacturing
PLAD (plasma doping) is promising for both evolutionary and revolutionary doping options because of its unique advantages which can overcome or minimize many of the issues of the beam-line (BL) based implants. In this talk, I present developments of PLAD on both planar and non-planar 3D device structures. Comparing with the conventional BL implants, PLAD shows not only a significant production enhancement, but also a significant device performance improvement and 3D structure doping capability, including an 80% contact resistance reduction, more than 25% drive current increase on planar devices, and 23% series resistance reduction, 25% drive current increase on non-planar 3D devices.