{"title":"自动改进电子学习材料的自适应和社会机制","authors":"K. Buffardi, S. Edwards","doi":"10.1145/2556325.2567861","DOIUrl":null,"url":null,"abstract":"Online environments introduce unprecedented scale for formal and informal learning communities. In these environments, user-contributed content enables social constructivist approaches to education. In particular, students can help each other by providing hints and suggestions on how to approach problems, by rating each other's suggestions, and by engaging in discussions about the questions. In addition, students can also learn through composing their own questions. Furthermore, with grounding in Item Response Theory, data mining and statistical student models can assess questions and hints for their quality and effectiveness. As a result, internet-scale learning environments allow us to move from simple, canned quizzing systems to a new model where automated, data-driven analysis continuously assesses and refines the quality of teaching material. Our poster describes a framework and prototype of an online drill-and-practice system that leverages user-contributed content and large-scale data to organically improve itself.","PeriodicalId":20830,"journal":{"name":"Proceedings of the first ACM conference on Learning @ scale conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive and social mechanisms for automated improvement of eLearning materials\",\"authors\":\"K. Buffardi, S. Edwards\",\"doi\":\"10.1145/2556325.2567861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online environments introduce unprecedented scale for formal and informal learning communities. In these environments, user-contributed content enables social constructivist approaches to education. In particular, students can help each other by providing hints and suggestions on how to approach problems, by rating each other's suggestions, and by engaging in discussions about the questions. In addition, students can also learn through composing their own questions. Furthermore, with grounding in Item Response Theory, data mining and statistical student models can assess questions and hints for their quality and effectiveness. As a result, internet-scale learning environments allow us to move from simple, canned quizzing systems to a new model where automated, data-driven analysis continuously assesses and refines the quality of teaching material. Our poster describes a framework and prototype of an online drill-and-practice system that leverages user-contributed content and large-scale data to organically improve itself.\",\"PeriodicalId\":20830,\"journal\":{\"name\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2556325.2567861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM conference on Learning @ scale conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556325.2567861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive and social mechanisms for automated improvement of eLearning materials
Online environments introduce unprecedented scale for formal and informal learning communities. In these environments, user-contributed content enables social constructivist approaches to education. In particular, students can help each other by providing hints and suggestions on how to approach problems, by rating each other's suggestions, and by engaging in discussions about the questions. In addition, students can also learn through composing their own questions. Furthermore, with grounding in Item Response Theory, data mining and statistical student models can assess questions and hints for their quality and effectiveness. As a result, internet-scale learning environments allow us to move from simple, canned quizzing systems to a new model where automated, data-driven analysis continuously assesses and refines the quality of teaching material. Our poster describes a framework and prototype of an online drill-and-practice system that leverages user-contributed content and large-scale data to organically improve itself.