准确的串扰建模以预测片上网络中的信道延迟

Zeinab Mahdavi, Z. Shirmohammadi, S. Miremadi
{"title":"准确的串扰建模以预测片上网络中的信道延迟","authors":"Zeinab Mahdavi, Z. Shirmohammadi, S. Miremadi","doi":"10.1109/IOLTS.2016.7604659","DOIUrl":null,"url":null,"abstract":"The severity of timing delay in the communication channels of Network on Chip (NoC) depends on the transition patterns appearing on the wires. An analytical model can estimate the timing delay in NoC channels in the presence of crosstalk faults. However, recently proposed analytical model does not have enough accuracy and is based on 3-wire delay model. In this paper, an Accurate Crosstalk Model (ACM) based on 5-wire delay model is proposed to estimate the delay of communication channels in the presence of crosstalk faults. ACM is more accurate due to considering more wires in the delay model and also considering the overlaps between locations of transition patterns.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"116 1","pages":"7-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ACM: Accurate crosstalk modeling to predict channel delay in Network-on-Chips\",\"authors\":\"Zeinab Mahdavi, Z. Shirmohammadi, S. Miremadi\",\"doi\":\"10.1109/IOLTS.2016.7604659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The severity of timing delay in the communication channels of Network on Chip (NoC) depends on the transition patterns appearing on the wires. An analytical model can estimate the timing delay in NoC channels in the presence of crosstalk faults. However, recently proposed analytical model does not have enough accuracy and is based on 3-wire delay model. In this paper, an Accurate Crosstalk Model (ACM) based on 5-wire delay model is proposed to estimate the delay of communication channels in the presence of crosstalk faults. ACM is more accurate due to considering more wires in the delay model and also considering the overlaps between locations of transition patterns.\",\"PeriodicalId\":6580,\"journal\":{\"name\":\"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"volume\":\"116 1\",\"pages\":\"7-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2016.7604659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

片上网络(Network on Chip, NoC)通信信道中时序延迟的严重程度取决于导线上出现的转换模式。一个解析模型可以估计存在串扰故障时NoC信道的时延。然而,目前提出的分析模型基于3线延迟模型,精度不够。本文提出了一种基于5线延迟模型的精确串扰模型(ACM),用于估计存在串扰故障时通信信道的延迟。由于在延迟模型中考虑了更多的导线,并且考虑了过渡模式位置之间的重叠,ACM更加准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACM: Accurate crosstalk modeling to predict channel delay in Network-on-Chips
The severity of timing delay in the communication channels of Network on Chip (NoC) depends on the transition patterns appearing on the wires. An analytical model can estimate the timing delay in NoC channels in the presence of crosstalk faults. However, recently proposed analytical model does not have enough accuracy and is based on 3-wire delay model. In this paper, an Accurate Crosstalk Model (ACM) based on 5-wire delay model is proposed to estimate the delay of communication channels in the presence of crosstalk faults. ACM is more accurate due to considering more wires in the delay model and also considering the overlaps between locations of transition patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keytone: Silent Data Corruptions at Scale Welcome Field profiling & monitoring of payload transistors in FPGAs Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation NBTI aging evaluation of PUF-based differential architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1