Y. Hoi, H. Meng, B. Bendok, L. Guterman, L. Hopkins
{"title":"血管曲率对颅内动脉瘤血流的影响","authors":"Y. Hoi, H. Meng, B. Bendok, L. Guterman, L. Hopkins","doi":"10.1109/IEMBS.2002.1106416","DOIUrl":null,"url":null,"abstract":"The effects of parent vessel curvature on the hemodynamic forces for lateral saccular aneurysms are evaluated by using computational fluid dynamics (CFD). As the vessel curvature increases, flow impinges the distal neck and enters the aneurysm violently, causing both the pressure and shear stress at the distal neck to increase. High-pressure and high wall shear stress zones at the distal neck expand with the increasing of vessel curvature. The location of maximal wall shear stress implies that the growth or rupture of aneurysm may initiate in this region. Moreover, the effects of parent vessel curvature on aneurysm hemodynamics may eventually help to predict the risk of individual aneurysm rupture. Implantation of stents has the dual effect of disrupting the flow into the aneurysm and altering the radius of curvature. The study of the effects of vessel curvature effects on flow thus has new implications for stent design and implantation.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":"7 1","pages":"1337-1338 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of vessel curvature on intracranial aneurysmal flow\",\"authors\":\"Y. Hoi, H. Meng, B. Bendok, L. Guterman, L. Hopkins\",\"doi\":\"10.1109/IEMBS.2002.1106416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of parent vessel curvature on the hemodynamic forces for lateral saccular aneurysms are evaluated by using computational fluid dynamics (CFD). As the vessel curvature increases, flow impinges the distal neck and enters the aneurysm violently, causing both the pressure and shear stress at the distal neck to increase. High-pressure and high wall shear stress zones at the distal neck expand with the increasing of vessel curvature. The location of maximal wall shear stress implies that the growth or rupture of aneurysm may initiate in this region. Moreover, the effects of parent vessel curvature on aneurysm hemodynamics may eventually help to predict the risk of individual aneurysm rupture. Implantation of stents has the dual effect of disrupting the flow into the aneurysm and altering the radius of curvature. The study of the effects of vessel curvature effects on flow thus has new implications for stent design and implantation.\",\"PeriodicalId\":60385,\"journal\":{\"name\":\"中国地球物理学会年刊\",\"volume\":\"7 1\",\"pages\":\"1337-1338 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国地球物理学会年刊\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2002.1106416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1106416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of vessel curvature on intracranial aneurysmal flow
The effects of parent vessel curvature on the hemodynamic forces for lateral saccular aneurysms are evaluated by using computational fluid dynamics (CFD). As the vessel curvature increases, flow impinges the distal neck and enters the aneurysm violently, causing both the pressure and shear stress at the distal neck to increase. High-pressure and high wall shear stress zones at the distal neck expand with the increasing of vessel curvature. The location of maximal wall shear stress implies that the growth or rupture of aneurysm may initiate in this region. Moreover, the effects of parent vessel curvature on aneurysm hemodynamics may eventually help to predict the risk of individual aneurysm rupture. Implantation of stents has the dual effect of disrupting the flow into the aneurysm and altering the radius of curvature. The study of the effects of vessel curvature effects on flow thus has new implications for stent design and implantation.