不对称狭窄动脉轴向拉伸血流和动脉压迫的三维模拟

D. Tang, Chun Yang, S. Kobayashi
{"title":"不对称狭窄动脉轴向拉伸血流和动脉压迫的三维模拟","authors":"D. Tang, Chun Yang, S. Kobayashi","doi":"10.1115/imece2001/bed-23124","DOIUrl":null,"url":null,"abstract":"\n There has been increasing evidence that severe stenosis may cause artery compression and plaque cap rupture leading to heart attack and stroke. The physiological conditions under which that may occur and mechanisms involved are not well understood. It has been known that severe stenosis causes critical flow and wall mechanical conditions such as flow limitation, flow separation, low and oscillating shear stress distal to the stenosis, high shear stress and low or even negative flow pressure at the throat of stenosis, artery compression or even collapse. Those conditions are related to limitation of blood supply, intimal thickening and thrombosis formation, endothelism damage, platelet activation and aggregation, plaque cap rupture (for review, see [1,2]). Due to the complexity of the problem and lack of experimental data for mechanical properties of arteries under both expansion and compression, previous models were limited primarily to flow behaviors and with various limitations (axisymmetry, rigid wall, small strain, small pressure gradient). In this paper, experimental data for artery mechanical properties under physiological conditions were measured and a 3-d computational model is introduced to investigate flow behaviors and wall stress and strain distributions with fluid-structure interactions to better understand the mechanism involved in artery compression and plaque cap rupture.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D Simulation for Blood Flow and Artery Compression in Asymmetric Stenotic Arteries With Axial Stretch\",\"authors\":\"D. Tang, Chun Yang, S. Kobayashi\",\"doi\":\"10.1115/imece2001/bed-23124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There has been increasing evidence that severe stenosis may cause artery compression and plaque cap rupture leading to heart attack and stroke. The physiological conditions under which that may occur and mechanisms involved are not well understood. It has been known that severe stenosis causes critical flow and wall mechanical conditions such as flow limitation, flow separation, low and oscillating shear stress distal to the stenosis, high shear stress and low or even negative flow pressure at the throat of stenosis, artery compression or even collapse. Those conditions are related to limitation of blood supply, intimal thickening and thrombosis formation, endothelism damage, platelet activation and aggregation, plaque cap rupture (for review, see [1,2]). Due to the complexity of the problem and lack of experimental data for mechanical properties of arteries under both expansion and compression, previous models were limited primarily to flow behaviors and with various limitations (axisymmetry, rigid wall, small strain, small pressure gradient). In this paper, experimental data for artery mechanical properties under physiological conditions were measured and a 3-d computational model is introduced to investigate flow behaviors and wall stress and strain distributions with fluid-structure interactions to better understand the mechanism involved in artery compression and plaque cap rupture.\",\"PeriodicalId\":7238,\"journal\":{\"name\":\"Advances in Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/bed-23124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明,严重的狭窄可能导致动脉受压和斑块帽破裂,从而导致心脏病发作和中风。可能发生这种情况的生理条件和相关机制尚不清楚。已知严重狭窄会引起临界流动和壁面力学条件,如流动受限、流动分离、狭窄远端低且振荡的剪切应力、狭窄喉部高剪切应力、低甚至负流压、动脉受压甚至塌陷等。这些情况与血液供应受限、内膜增厚和血栓形成、内皮损伤、血小板活化和聚集、斑块帽破裂有关(回顾,见[1,2])。由于问题的复杂性和缺乏动脉在膨胀和压缩下力学性能的实验数据,以往的模型主要局限于流动行为,并且有各种局限性(轴对称、刚性壁面、小应变、小压力梯度)。本文测量了生理条件下动脉力学性能的实验数据,并引入三维计算模型来研究流固相互作用下的流动行为和壁面应力应变分布,以更好地了解动脉受压和斑块帽破裂的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-D Simulation for Blood Flow and Artery Compression in Asymmetric Stenotic Arteries With Axial Stretch
There has been increasing evidence that severe stenosis may cause artery compression and plaque cap rupture leading to heart attack and stroke. The physiological conditions under which that may occur and mechanisms involved are not well understood. It has been known that severe stenosis causes critical flow and wall mechanical conditions such as flow limitation, flow separation, low and oscillating shear stress distal to the stenosis, high shear stress and low or even negative flow pressure at the throat of stenosis, artery compression or even collapse. Those conditions are related to limitation of blood supply, intimal thickening and thrombosis formation, endothelism damage, platelet activation and aggregation, plaque cap rupture (for review, see [1,2]). Due to the complexity of the problem and lack of experimental data for mechanical properties of arteries under both expansion and compression, previous models were limited primarily to flow behaviors and with various limitations (axisymmetry, rigid wall, small strain, small pressure gradient). In this paper, experimental data for artery mechanical properties under physiological conditions were measured and a 3-d computational model is introduced to investigate flow behaviors and wall stress and strain distributions with fluid-structure interactions to better understand the mechanism involved in artery compression and plaque cap rupture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Graft Material on Anterior Cruciate Ligament Reconstruction: A 3D Computational Simulation A “Point Cloud” Approach in Superelastic Stent Design Biomechanical Properties of Grown Cartilage Are Decreased in the Presence of Retinoic Acid, Chondroitinase ABC and Ibuprofen Building Cellular Microenvironments to Control Capillary Endothelial Cell Proliferation, Death, and Differentiation Mechanical Factors Can Influence the Gender Differences in the Incidence of Non-Contact Injuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1