Shareeful Islam, Abdulrazaq Abba, Umar Mukhtar Ismail, H. Mouratidis, Spyridon Papastergiou
{"title":"针对安全医疗保健供应链服务交付的漏洞预测","authors":"Shareeful Islam, Abdulrazaq Abba, Umar Mukhtar Ismail, H. Mouratidis, Spyridon Papastergiou","doi":"10.3233/ica-220689","DOIUrl":null,"url":null,"abstract":"Healthcare organisations are constantly facing sophisticated cyberattacks due to the sensitivity and criticality of patient health care information and wide connectivity of medical devices. Such attacks can pose potential disruptions to critical services delivery. There are number of existing works that focus on using Machine Learning (ML) models for predicting vulnerability and exploitation but most of these works focused on parameterized values to predict severity and exploitability. This paper proposes a novel method that uses ontology axioms to define essential concepts related to the overall healthcare ecosystem and to ensure semantic consistency checking among such concepts. The application of ontology enables the formal specification and description of healthcare ecosystem and the key elements used in vulnerability assessment as a set of concepts. Such specification also strengthens the relationships that exist between healthcare-based and vulnerability assessment concepts, in addition to semantic definition and reasoning of the concepts. Our work also makes use of Machine Learning techniques to predict possible security vulnerabilities in health care supply chain services. The paper demonstrates the applicability of our work by using vulnerability datasets to predict the exploitation. The results show that the conceptualization of healthcare sector cybersecurity using an ontological approach provides mechanisms to better understand the correlation between the healthcare sector and the security domain, while the ML algorithms increase the accuracy of the vulnerability exploitability prediction. Our result shows that using Linear Regression, Decision Tree and Random Forest provided a reasonable result for predicting vulnerability exploitability.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"151 1","pages":"389-409"},"PeriodicalIF":5.8000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vulnerability prediction for secure healthcare supply chain service delivery\",\"authors\":\"Shareeful Islam, Abdulrazaq Abba, Umar Mukhtar Ismail, H. Mouratidis, Spyridon Papastergiou\",\"doi\":\"10.3233/ica-220689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Healthcare organisations are constantly facing sophisticated cyberattacks due to the sensitivity and criticality of patient health care information and wide connectivity of medical devices. Such attacks can pose potential disruptions to critical services delivery. There are number of existing works that focus on using Machine Learning (ML) models for predicting vulnerability and exploitation but most of these works focused on parameterized values to predict severity and exploitability. This paper proposes a novel method that uses ontology axioms to define essential concepts related to the overall healthcare ecosystem and to ensure semantic consistency checking among such concepts. The application of ontology enables the formal specification and description of healthcare ecosystem and the key elements used in vulnerability assessment as a set of concepts. Such specification also strengthens the relationships that exist between healthcare-based and vulnerability assessment concepts, in addition to semantic definition and reasoning of the concepts. Our work also makes use of Machine Learning techniques to predict possible security vulnerabilities in health care supply chain services. The paper demonstrates the applicability of our work by using vulnerability datasets to predict the exploitation. The results show that the conceptualization of healthcare sector cybersecurity using an ontological approach provides mechanisms to better understand the correlation between the healthcare sector and the security domain, while the ML algorithms increase the accuracy of the vulnerability exploitability prediction. Our result shows that using Linear Regression, Decision Tree and Random Forest provided a reasonable result for predicting vulnerability exploitability.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"151 1\",\"pages\":\"389-409\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-220689\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-220689","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vulnerability prediction for secure healthcare supply chain service delivery
Healthcare organisations are constantly facing sophisticated cyberattacks due to the sensitivity and criticality of patient health care information and wide connectivity of medical devices. Such attacks can pose potential disruptions to critical services delivery. There are number of existing works that focus on using Machine Learning (ML) models for predicting vulnerability and exploitation but most of these works focused on parameterized values to predict severity and exploitability. This paper proposes a novel method that uses ontology axioms to define essential concepts related to the overall healthcare ecosystem and to ensure semantic consistency checking among such concepts. The application of ontology enables the formal specification and description of healthcare ecosystem and the key elements used in vulnerability assessment as a set of concepts. Such specification also strengthens the relationships that exist between healthcare-based and vulnerability assessment concepts, in addition to semantic definition and reasoning of the concepts. Our work also makes use of Machine Learning techniques to predict possible security vulnerabilities in health care supply chain services. The paper demonstrates the applicability of our work by using vulnerability datasets to predict the exploitation. The results show that the conceptualization of healthcare sector cybersecurity using an ontological approach provides mechanisms to better understand the correlation between the healthcare sector and the security domain, while the ML algorithms increase the accuracy of the vulnerability exploitability prediction. Our result shows that using Linear Regression, Decision Tree and Random Forest provided a reasonable result for predicting vulnerability exploitability.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.