{"title":"喷墨3D打印振动能量采集器","authors":"B. Kawa, K. Sliwa, R. Walczak, V. C. Lee","doi":"10.1109/PowerMEMS49317.2019.71805309366","DOIUrl":null,"url":null,"abstract":"The concept of Internet of Things (IoT), sets a list of challenges we have to face for its fully functioning. One of them is power supply. In off-grid systems, the demand on the autonomous power generators is really high. In this paper we present for the first time inkjet 3D printed vibration power microgenerator. The principle of electricity generation in presented energy harvester relies on the electromagnetic induction of electricity in coil by vibrating magnet. Magnet is suspended on 3D printed microsprings. The device exhibits the highest generated voltage value in microspring resonant frequency (~250 Hz) and is equal to 0,5 V with output counted in mW. Microspring resonant frequency can be easily adjustable by changing their dimensions during designing step and 3D printing.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"25 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inkjet 3D printed vibrational energy harvester\",\"authors\":\"B. Kawa, K. Sliwa, R. Walczak, V. C. Lee\",\"doi\":\"10.1109/PowerMEMS49317.2019.71805309366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of Internet of Things (IoT), sets a list of challenges we have to face for its fully functioning. One of them is power supply. In off-grid systems, the demand on the autonomous power generators is really high. In this paper we present for the first time inkjet 3D printed vibration power microgenerator. The principle of electricity generation in presented energy harvester relies on the electromagnetic induction of electricity in coil by vibrating magnet. Magnet is suspended on 3D printed microsprings. The device exhibits the highest generated voltage value in microspring resonant frequency (~250 Hz) and is equal to 0,5 V with output counted in mW. Microspring resonant frequency can be easily adjustable by changing their dimensions during designing step and 3D printing.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"25 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.71805309366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.71805309366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The concept of Internet of Things (IoT), sets a list of challenges we have to face for its fully functioning. One of them is power supply. In off-grid systems, the demand on the autonomous power generators is really high. In this paper we present for the first time inkjet 3D printed vibration power microgenerator. The principle of electricity generation in presented energy harvester relies on the electromagnetic induction of electricity in coil by vibrating magnet. Magnet is suspended on 3D printed microsprings. The device exhibits the highest generated voltage value in microspring resonant frequency (~250 Hz) and is equal to 0,5 V with output counted in mW. Microspring resonant frequency can be easily adjustable by changing their dimensions during designing step and 3D printing.