Fan Zhou, Xiaoli Yue, Goce Trajcevski, Ting Zhong, Kunpeng Zhang
{"title":"情境感知变分轨迹编码与人类移动性推理","authors":"Fan Zhou, Xiaoli Yue, Goce Trajcevski, Ting Zhong, Kunpeng Zhang","doi":"10.1145/3308558.3313608","DOIUrl":null,"url":null,"abstract":"Unveiling human mobility patterns is an important task for many downstream applications like point-of-interest (POI) recommendation and personalized trip planning. Compelling results exist in various sequential modeling methods and representation techniques. However, discovering and exploiting the context of trajectories in terms of abstract topics associated with the motion can provide a more comprehensive understanding of the dynamics of patterns. We propose a new paradigm for moving pattern mining based on learning trajectory context, and a method - Context-Aware Variational Trajectory Encoding and Human Mobility Inference (CATHI) - for learning user trajectory representation via a framework consisting of: (1) a variational encoder and a recurrent encoder; (2) a variational attention layer; (3) two decoders. We simultaneously tackle two subtasks: (T1) recovering user routes (trajectory reconstruction); and (T2) predicting the trip that the user would travel (trajectory prediction). We show that the encoded contextual trajectory vectors efficiently characterize the hierarchical mobility semantics, from which one can decode the implicit meanings of trajectories. We evaluate our method on several public datasets and demonstrate that the proposed CATHI can efficiently improve the performance of both subtasks, compared to state-of-the-art approaches.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Context-aware Variational Trajectory Encoding and Human Mobility Inference\",\"authors\":\"Fan Zhou, Xiaoli Yue, Goce Trajcevski, Ting Zhong, Kunpeng Zhang\",\"doi\":\"10.1145/3308558.3313608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unveiling human mobility patterns is an important task for many downstream applications like point-of-interest (POI) recommendation and personalized trip planning. Compelling results exist in various sequential modeling methods and representation techniques. However, discovering and exploiting the context of trajectories in terms of abstract topics associated with the motion can provide a more comprehensive understanding of the dynamics of patterns. We propose a new paradigm for moving pattern mining based on learning trajectory context, and a method - Context-Aware Variational Trajectory Encoding and Human Mobility Inference (CATHI) - for learning user trajectory representation via a framework consisting of: (1) a variational encoder and a recurrent encoder; (2) a variational attention layer; (3) two decoders. We simultaneously tackle two subtasks: (T1) recovering user routes (trajectory reconstruction); and (T2) predicting the trip that the user would travel (trajectory prediction). We show that the encoded contextual trajectory vectors efficiently characterize the hierarchical mobility semantics, from which one can decode the implicit meanings of trajectories. We evaluate our method on several public datasets and demonstrate that the proposed CATHI can efficiently improve the performance of both subtasks, compared to state-of-the-art approaches.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-aware Variational Trajectory Encoding and Human Mobility Inference
Unveiling human mobility patterns is an important task for many downstream applications like point-of-interest (POI) recommendation and personalized trip planning. Compelling results exist in various sequential modeling methods and representation techniques. However, discovering and exploiting the context of trajectories in terms of abstract topics associated with the motion can provide a more comprehensive understanding of the dynamics of patterns. We propose a new paradigm for moving pattern mining based on learning trajectory context, and a method - Context-Aware Variational Trajectory Encoding and Human Mobility Inference (CATHI) - for learning user trajectory representation via a framework consisting of: (1) a variational encoder and a recurrent encoder; (2) a variational attention layer; (3) two decoders. We simultaneously tackle two subtasks: (T1) recovering user routes (trajectory reconstruction); and (T2) predicting the trip that the user would travel (trajectory prediction). We show that the encoded contextual trajectory vectors efficiently characterize the hierarchical mobility semantics, from which one can decode the implicit meanings of trajectories. We evaluate our method on several public datasets and demonstrate that the proposed CATHI can efficiently improve the performance of both subtasks, compared to state-of-the-art approaches.