{"title":"混合分解卷积网络:用于眼部疾病识别的轻量级高效卷积神经网络","authors":"Xiaoqing Zhang, Xiao Wu, Zunjie Xiao, Lingxi Hu, Zhongxi Qiu, Qingyang Sun, Risa Higashita, Jiang Liu","doi":"10.1049/cit2.12246","DOIUrl":null,"url":null,"abstract":"<p>Eye health has become a global health concern and attracted broad attention. Over the years, researchers have proposed many state-of-the-art convolutional neural networks (CNNs) to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely. However, most existing methods were dedicated to constructing sophisticated CNNs, inevitably ignoring the trade-off between performance and model complexity. To alleviate this paradox, this paper proposes a lightweight yet efficient network architecture, mixed-decomposed convolutional network (MDNet), to recognise ocular diseases. In MDNet, we introduce a novel mixed-decomposed depthwise convolution method, which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters. We conduct extensive experiments on the clinical anterior segment optical coherence tomography (AS-OCT), LAG, University of California San Diego, and CIFAR-100 datasets. The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets. Specifically, our MDNet outperforms MobileNets by <b>2.5%</b> of accuracy by using <b>22%</b> fewer parameters and <b>30%</b> fewer computations on the AS-OCT dataset.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 2","pages":"319-332"},"PeriodicalIF":8.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12246","citationCount":"0","resultStr":"{\"title\":\"Mixed-decomposed convolutional network: A lightweight yet efficient convolutional neural network for ocular disease recognition\",\"authors\":\"Xiaoqing Zhang, Xiao Wu, Zunjie Xiao, Lingxi Hu, Zhongxi Qiu, Qingyang Sun, Risa Higashita, Jiang Liu\",\"doi\":\"10.1049/cit2.12246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eye health has become a global health concern and attracted broad attention. Over the years, researchers have proposed many state-of-the-art convolutional neural networks (CNNs) to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely. However, most existing methods were dedicated to constructing sophisticated CNNs, inevitably ignoring the trade-off between performance and model complexity. To alleviate this paradox, this paper proposes a lightweight yet efficient network architecture, mixed-decomposed convolutional network (MDNet), to recognise ocular diseases. In MDNet, we introduce a novel mixed-decomposed depthwise convolution method, which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters. We conduct extensive experiments on the clinical anterior segment optical coherence tomography (AS-OCT), LAG, University of California San Diego, and CIFAR-100 datasets. The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets. Specifically, our MDNet outperforms MobileNets by <b>2.5%</b> of accuracy by using <b>22%</b> fewer parameters and <b>30%</b> fewer computations on the AS-OCT dataset.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 2\",\"pages\":\"319-332\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12246\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12246\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12246","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Mixed-decomposed convolutional network: A lightweight yet efficient convolutional neural network for ocular disease recognition
Eye health has become a global health concern and attracted broad attention. Over the years, researchers have proposed many state-of-the-art convolutional neural networks (CNNs) to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely. However, most existing methods were dedicated to constructing sophisticated CNNs, inevitably ignoring the trade-off between performance and model complexity. To alleviate this paradox, this paper proposes a lightweight yet efficient network architecture, mixed-decomposed convolutional network (MDNet), to recognise ocular diseases. In MDNet, we introduce a novel mixed-decomposed depthwise convolution method, which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters. We conduct extensive experiments on the clinical anterior segment optical coherence tomography (AS-OCT), LAG, University of California San Diego, and CIFAR-100 datasets. The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets. Specifically, our MDNet outperforms MobileNets by 2.5% of accuracy by using 22% fewer parameters and 30% fewer computations on the AS-OCT dataset.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.