采用GH-Method:数学-物理医学的六期糖化血红蛋白方差研究及PPG预测方法

{"title":"采用GH-Method:数学-物理医学的六期糖化血红蛋白方差研究及PPG预测方法","authors":"","doi":"10.33140/jcei.05.04.01","DOIUrl":null,"url":null,"abstract":"In this case study, the author analyzed, predicted, and interpreted a type 2 diabetes (T2D) patient’s hemoglobin A1C variances based on six periods data utilizing the GH-Method: math-physical medicine approach by applying mathematics, physics, engineering modeling, and computer science (big data analytics and AI). He believes in “prediction” and has developed five models, including metabolism index, weight, fasting plasma glucose (FPG), postprandial plasma glucose (PPG), and hemoglobin A1C. All prediction models have reached to 95% to 99% accuracy. His focus is on preventive medicine, especially on diabetes control via lifestyle management.","PeriodicalId":73657,"journal":{"name":"Journal of clinical & experimental immunology","volume":"02 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A1C Variance Study and PPG Prediction Methodology over Six Periods Using GH-Method: Math-Physical Medicine\",\"authors\":\"\",\"doi\":\"10.33140/jcei.05.04.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this case study, the author analyzed, predicted, and interpreted a type 2 diabetes (T2D) patient’s hemoglobin A1C variances based on six periods data utilizing the GH-Method: math-physical medicine approach by applying mathematics, physics, engineering modeling, and computer science (big data analytics and AI). He believes in “prediction” and has developed five models, including metabolism index, weight, fasting plasma glucose (FPG), postprandial plasma glucose (PPG), and hemoglobin A1C. All prediction models have reached to 95% to 99% accuracy. His focus is on preventive medicine, especially on diabetes control via lifestyle management.\",\"PeriodicalId\":73657,\"journal\":{\"name\":\"Journal of clinical & experimental immunology\",\"volume\":\"02 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical & experimental immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jcei.05.04.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical & experimental immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jcei.05.04.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本案例研究中,作者利用GH-Method:数学-物理医学方法,运用数学、物理、工程建模和计算机科学(大数据分析和人工智能),基于6期数据,分析、预测和解释了1例2型糖尿病(T2D)患者的血红蛋白A1C差异。他相信“预测”,开发了代谢指数、体重、空腹血糖(FPG)、餐后血糖(PPG)、血红蛋白A1C等5个模型。所有预测模型的准确率均达到95% ~ 99%。他的研究重点是预防医学,特别是通过生活方式管理控制糖尿病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A1C Variance Study and PPG Prediction Methodology over Six Periods Using GH-Method: Math-Physical Medicine
In this case study, the author analyzed, predicted, and interpreted a type 2 diabetes (T2D) patient’s hemoglobin A1C variances based on six periods data utilizing the GH-Method: math-physical medicine approach by applying mathematics, physics, engineering modeling, and computer science (big data analytics and AI). He believes in “prediction” and has developed five models, including metabolism index, weight, fasting plasma glucose (FPG), postprandial plasma glucose (PPG), and hemoglobin A1C. All prediction models have reached to 95% to 99% accuracy. His focus is on preventive medicine, especially on diabetes control via lifestyle management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other Sea Star Igkappa Gene Cloning Assay in E.Coli with New Parameters Australian COVID-19 pandemic: A Bradford Hill Analysis of Iatrogenic Excess Mortality Nutritional Management of Celiac Disease Cinnamein Inhibits the Induction of Nitric Oxide and Proinflammatory Cytokines in Macrophages, Microglia and Astrocytes. Therapeutic Monoclonal Antibodies Approved by FDA in 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1