基于机器学习方法的混合可再生能源故障诊断

Haoxiang Wang
{"title":"基于机器学习方法的混合可再生能源故障诊断","authors":"Haoxiang Wang","doi":"10.36548/jtcsst.2021.3.005","DOIUrl":null,"url":null,"abstract":"In recent days the need for energy resources is dramatically increasing world-wide. Overall 80% of the energy resource is supplied in the form of fuel based energy source and nuclear based energy source. Where fuel based energy resources are very essential in day-to-day life. Fossil fuel is also one among the energy resource and due to the high demand we face shortage in these resources. Providing electricity in rural areas is still a difficult process because of the shortage of energy resources. This issue can be rectified by choosing an alternate to electricity. To achieve this we have integrated many renewable energy sources to form a hybrid-renewable energy source system and this is capable of providing power supply to these areas. We have adopted artificial neural networks (ANN) technique based on machine learning to accomplish this process. For short-term prediction other techniques such as MLP, CNN, RNN and LSTM are used. These values are used as reference value in final execution.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fault Diagnosis in Hybrid Renewable Energy Sources with Machine Learning Approach\",\"authors\":\"Haoxiang Wang\",\"doi\":\"10.36548/jtcsst.2021.3.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent days the need for energy resources is dramatically increasing world-wide. Overall 80% of the energy resource is supplied in the form of fuel based energy source and nuclear based energy source. Where fuel based energy resources are very essential in day-to-day life. Fossil fuel is also one among the energy resource and due to the high demand we face shortage in these resources. Providing electricity in rural areas is still a difficult process because of the shortage of energy resources. This issue can be rectified by choosing an alternate to electricity. To achieve this we have integrated many renewable energy sources to form a hybrid-renewable energy source system and this is capable of providing power supply to these areas. We have adopted artificial neural networks (ANN) technique based on machine learning to accomplish this process. For short-term prediction other techniques such as MLP, CNN, RNN and LSTM are used. These values are used as reference value in final execution.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jtcsst.2021.3.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jtcsst.2021.3.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近几天,全世界对能源的需求急剧增加。总的来说,80%的能源是以燃料能源和核能源的形式提供的。以燃料为基础的能源在日常生活中是非常重要的。化石燃料也是能源资源之一,由于需求量大,我们面临着这些资源的短缺。由于能源短缺,向农村地区供电仍然是一个困难的过程。这个问题可以通过选择电力的替代品来解决。为了实现这一目标,我们整合了许多可再生能源,形成了一个混合可再生能源系统,能够为这些地区提供电力供应。我们采用了基于机器学习的人工神经网络(ANN)技术来完成这一过程。对于短期预测,使用其他技术,如MLP, CNN, RNN和LSTM。这些值在最终执行时用作参考值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Diagnosis in Hybrid Renewable Energy Sources with Machine Learning Approach
In recent days the need for energy resources is dramatically increasing world-wide. Overall 80% of the energy resource is supplied in the form of fuel based energy source and nuclear based energy source. Where fuel based energy resources are very essential in day-to-day life. Fossil fuel is also one among the energy resource and due to the high demand we face shortage in these resources. Providing electricity in rural areas is still a difficult process because of the shortage of energy resources. This issue can be rectified by choosing an alternate to electricity. To achieve this we have integrated many renewable energy sources to form a hybrid-renewable energy source system and this is capable of providing power supply to these areas. We have adopted artificial neural networks (ANN) technique based on machine learning to accomplish this process. For short-term prediction other techniques such as MLP, CNN, RNN and LSTM are used. These values are used as reference value in final execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1