{"title":"城市公交车的混合动力模型","authors":"Izabela Kowarska, J. Korta, K. Kuczek, T. Uhl","doi":"10.7494/MECH.2013.32.1.13","DOIUrl":null,"url":null,"abstract":"Sophisticated virtual prototyping methods have become a standard in the modern vehicle design process. Unfortunately, in many cases automobile manufacturers (in particular bus manufacturers) still do not take advantage of numerical design techniques, basing instead on intuition and experience. In this paper hybrid modelling of an urban bus is presented. A hybrid bus model links different types of modelling that can be used to perform a wide range of virtual analyses of vehicle static and dynamic behaviour. The major objective of development and usage of a complex model is to reduce a time and cost of vehicle design process improving vehicle quality at the same time. The main advantage instead is a possibility to exploit a model for different performances of vehicle subsystems. A hybrid model representing real vehicle behaviour consists of three modelling techniques commonly used in automotive industry: multibody modelling, finite element modelling and multi- port (block) modelling. A full model has been developed via commercial software which ensures its availability among automotive engineers.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"154 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HYBRID MODELLING OF AN URBAN BUS\",\"authors\":\"Izabela Kowarska, J. Korta, K. Kuczek, T. Uhl\",\"doi\":\"10.7494/MECH.2013.32.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sophisticated virtual prototyping methods have become a standard in the modern vehicle design process. Unfortunately, in many cases automobile manufacturers (in particular bus manufacturers) still do not take advantage of numerical design techniques, basing instead on intuition and experience. In this paper hybrid modelling of an urban bus is presented. A hybrid bus model links different types of modelling that can be used to perform a wide range of virtual analyses of vehicle static and dynamic behaviour. The major objective of development and usage of a complex model is to reduce a time and cost of vehicle design process improving vehicle quality at the same time. The main advantage instead is a possibility to exploit a model for different performances of vehicle subsystems. A hybrid model representing real vehicle behaviour consists of three modelling techniques commonly used in automotive industry: multibody modelling, finite element modelling and multi- port (block) modelling. A full model has been developed via commercial software which ensures its availability among automotive engineers.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"154 1\",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Sophisticated virtual prototyping methods have become a standard in the modern vehicle design process. Unfortunately, in many cases automobile manufacturers (in particular bus manufacturers) still do not take advantage of numerical design techniques, basing instead on intuition and experience. In this paper hybrid modelling of an urban bus is presented. A hybrid bus model links different types of modelling that can be used to perform a wide range of virtual analyses of vehicle static and dynamic behaviour. The major objective of development and usage of a complex model is to reduce a time and cost of vehicle design process improving vehicle quality at the same time. The main advantage instead is a possibility to exploit a model for different performances of vehicle subsystems. A hybrid model representing real vehicle behaviour consists of three modelling techniques commonly used in automotive industry: multibody modelling, finite element modelling and multi- port (block) modelling. A full model has been developed via commercial software which ensures its availability among automotive engineers.