Keith Hernandez, A. Press, M. Goeckner, L. Overzet
{"title":"脉冲电容耦合氩等离子体重燃过程中的光发射强度超调和电子加热机制","authors":"Keith Hernandez, A. Press, M. Goeckner, L. Overzet","doi":"10.1116/6.0000679","DOIUrl":null,"url":null,"abstract":"Phase resolved optical emission spectroscopy (PROES) measurements were combined with measurements of the optical emission intensity (OEI) and electrical characteristics (RF current and voltage, power, and DC bias voltage) as a function of time during the re-ignition of Ar plasmas pulsed at 100 Hz and 10 kHz. The OEI exhibits a large overshoot at the 100 Hz pulsing rate even though no such overshoot is present in any of the electrical characteristics. The OEI overshoot occurs at a point in time when the RF power, voltage, DC bias voltage, and electron density are all smaller than they become later in the glow. PROES measurements in combination with the time resolved electrical characteristics indicate that the heating mechanism for the electrons changes during the time of the overshoot in the OEI from stochastic heating to a combination of stochastic and ohmic heating. This combination appears to enable a more efficient transfer of the electrical energy into the electrons.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"24 1","pages":"024003"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optical emission intensity overshoot and electron heating mechanisms during the re-ignition of pulsed capacitively coupled Ar plasmas\",\"authors\":\"Keith Hernandez, A. Press, M. Goeckner, L. Overzet\",\"doi\":\"10.1116/6.0000679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase resolved optical emission spectroscopy (PROES) measurements were combined with measurements of the optical emission intensity (OEI) and electrical characteristics (RF current and voltage, power, and DC bias voltage) as a function of time during the re-ignition of Ar plasmas pulsed at 100 Hz and 10 kHz. The OEI exhibits a large overshoot at the 100 Hz pulsing rate even though no such overshoot is present in any of the electrical characteristics. The OEI overshoot occurs at a point in time when the RF power, voltage, DC bias voltage, and electron density are all smaller than they become later in the glow. PROES measurements in combination with the time resolved electrical characteristics indicate that the heating mechanism for the electrons changes during the time of the overshoot in the OEI from stochastic heating to a combination of stochastic and ohmic heating. This combination appears to enable a more efficient transfer of the electrical energy into the electrons.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":\"24 1\",\"pages\":\"024003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical emission intensity overshoot and electron heating mechanisms during the re-ignition of pulsed capacitively coupled Ar plasmas
Phase resolved optical emission spectroscopy (PROES) measurements were combined with measurements of the optical emission intensity (OEI) and electrical characteristics (RF current and voltage, power, and DC bias voltage) as a function of time during the re-ignition of Ar plasmas pulsed at 100 Hz and 10 kHz. The OEI exhibits a large overshoot at the 100 Hz pulsing rate even though no such overshoot is present in any of the electrical characteristics. The OEI overshoot occurs at a point in time when the RF power, voltage, DC bias voltage, and electron density are all smaller than they become later in the glow. PROES measurements in combination with the time resolved electrical characteristics indicate that the heating mechanism for the electrons changes during the time of the overshoot in the OEI from stochastic heating to a combination of stochastic and ohmic heating. This combination appears to enable a more efficient transfer of the electrical energy into the electrons.