Arief Andy Soebroto, M. T. Furqon, Eko Ari Setijono Marhendraputro, Wildan Ziaulhaq
{"title":"采用视觉风险评分的模糊Tsukamoto方法支持中风决策系统","authors":"Arief Andy Soebroto, M. T. Furqon, Eko Ari Setijono Marhendraputro, Wildan Ziaulhaq","doi":"10.26418/jp.v8i2.56362","DOIUrl":null,"url":null,"abstract":"Penyakit stroke adalah salah kerusakan pada otak yang muncul secara mendadak akibat gangguan peredaran darah otak non-traumatis. Gangguan tersebut dapat berupa pembuluh darah tersumbat yang dapat menghambat atau menghentikan aliran darah ke otak. Penyakit stroke di Indonesia telah mengalami peningkatan, angka prevalensi per mil telah meningkat dari 7% pada tahun 2013 menjadi sebesar 10,9% pada tahun 2018. Penyakit stroke dapat dikurangi dengan melakukan deteksi dini pada masyarakat supaya dapat melakukan tindakan preventif. Deteksi dini penyakit stroke memiliki kondisi data yang semi terstruktur karena banyaknya faktor untuk mengidentifikasi risiko penyakit stroke. Kondisi data semi terstruktur akan mempersulit deteksi dini penyakit stroke sehingga diperlukan alat bantu berupa sistem pendukung keputusan (SPK). Penelitian dilakukan dengan membangun sistem pendukung keputusan deteksi dini penyakit stroke menggunakan metode Fuzzy Tsukamoto. Model basis pengetahuan menggunakan Framingham Risk Score sebagai dasar untuk pembuatan aturan (rule) klasifikasi dengan 120 data pasien Puskesmas Kendalkerep Kota Malang. Hasil pengujian yang didapatkan adalah akurasi sebesar 0,8444, presisi sebesar 0,7801, recall sebesar 0,796, specificity sebesar 0,8891, dan F1 score sebesar 0,751.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Pendukung Keputusan Penyakit Stroke menggunakan Metode Fuzzy Tsukamoto dengan Basis Pengetahuan Framingham Risk Score\",\"authors\":\"Arief Andy Soebroto, M. T. Furqon, Eko Ari Setijono Marhendraputro, Wildan Ziaulhaq\",\"doi\":\"10.26418/jp.v8i2.56362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penyakit stroke adalah salah kerusakan pada otak yang muncul secara mendadak akibat gangguan peredaran darah otak non-traumatis. Gangguan tersebut dapat berupa pembuluh darah tersumbat yang dapat menghambat atau menghentikan aliran darah ke otak. Penyakit stroke di Indonesia telah mengalami peningkatan, angka prevalensi per mil telah meningkat dari 7% pada tahun 2013 menjadi sebesar 10,9% pada tahun 2018. Penyakit stroke dapat dikurangi dengan melakukan deteksi dini pada masyarakat supaya dapat melakukan tindakan preventif. Deteksi dini penyakit stroke memiliki kondisi data yang semi terstruktur karena banyaknya faktor untuk mengidentifikasi risiko penyakit stroke. Kondisi data semi terstruktur akan mempersulit deteksi dini penyakit stroke sehingga diperlukan alat bantu berupa sistem pendukung keputusan (SPK). Penelitian dilakukan dengan membangun sistem pendukung keputusan deteksi dini penyakit stroke menggunakan metode Fuzzy Tsukamoto. Model basis pengetahuan menggunakan Framingham Risk Score sebagai dasar untuk pembuatan aturan (rule) klasifikasi dengan 120 data pasien Puskesmas Kendalkerep Kota Malang. Hasil pengujian yang didapatkan adalah akurasi sebesar 0,8444, presisi sebesar 0,7801, recall sebesar 0,796, specificity sebesar 0,8891, dan F1 score sebesar 0,751.\",\"PeriodicalId\":31793,\"journal\":{\"name\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/jp.v8i2.56362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i2.56362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sistem Pendukung Keputusan Penyakit Stroke menggunakan Metode Fuzzy Tsukamoto dengan Basis Pengetahuan Framingham Risk Score
Penyakit stroke adalah salah kerusakan pada otak yang muncul secara mendadak akibat gangguan peredaran darah otak non-traumatis. Gangguan tersebut dapat berupa pembuluh darah tersumbat yang dapat menghambat atau menghentikan aliran darah ke otak. Penyakit stroke di Indonesia telah mengalami peningkatan, angka prevalensi per mil telah meningkat dari 7% pada tahun 2013 menjadi sebesar 10,9% pada tahun 2018. Penyakit stroke dapat dikurangi dengan melakukan deteksi dini pada masyarakat supaya dapat melakukan tindakan preventif. Deteksi dini penyakit stroke memiliki kondisi data yang semi terstruktur karena banyaknya faktor untuk mengidentifikasi risiko penyakit stroke. Kondisi data semi terstruktur akan mempersulit deteksi dini penyakit stroke sehingga diperlukan alat bantu berupa sistem pendukung keputusan (SPK). Penelitian dilakukan dengan membangun sistem pendukung keputusan deteksi dini penyakit stroke menggunakan metode Fuzzy Tsukamoto. Model basis pengetahuan menggunakan Framingham Risk Score sebagai dasar untuk pembuatan aturan (rule) klasifikasi dengan 120 data pasien Puskesmas Kendalkerep Kota Malang. Hasil pengujian yang didapatkan adalah akurasi sebesar 0,8444, presisi sebesar 0,7801, recall sebesar 0,796, specificity sebesar 0,8891, dan F1 score sebesar 0,751.